[BZOJ3667]Rabin-Miller算法(Pollard_rho) 题面 呜,权限题,别问我是怎么做的(我肯定没有权限号啊) 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个. 题解 \(Pollard\_rho\)的模板题,权限题什么的烦死了. #include<iostream> #include<cs…
3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 983  Solved: 302[Submit][Status][Discuss] Description Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个. Output…
POJ 1811 Prime Test Time Limit: 6000MS   Memory Limit: 65536K Total Submissions: 32534   Accepted: 8557 Case Time Limit: 4000MS Description Given a big integer number, you are required to find out whether it's a prime number. Input The first line con…
3667: Rabin-Miller算法 Time Limit: 60 Sec  Memory Limit: 512 MBSubmit: 1200  Solved: 363[Submit][Status][Discuss] Input 第一行:CAS,代表数据组数(不大于350),以下CAS行,每行一个数字,保证在64位长整形范围内,并且没有负数.你需要对于每个数字:第一,检验是否是质数,是质数就输出Prime 第二,如果不是质数,输出它最大的质因子是哪个. Output 第一行CAS(CAS<…
一些前置知识可以看一下我的联赛前数学知识 如何判断一个数是否为质数 方法一:试除法 扫描\(2\sim \sqrt{n}\)之间的所有整数,依次检查它们能否整除\(n\),若都不能整除,则\(n\)是质数,否则\(n\)是合数. 代码 bool is_prime(int n){ if(n<2) return 0; int m=sqrt(n); for(int i=2;i<=m;i++){ if(n%i==0) return 0; } return 1; } 方法二.线性筛 用 \(O(n)\)…
这两天又看了一遍<算法导论>上面的字符串匹配那一节,下面是实现的几个程序,可能有错误,仅供参考和交流. 关于详细的讲解,网上有很多,大多数算法及数据结构书中都应该有涉及,由于时间限制,在这就不重复了. 需要说明的是: stra:主串,及需要从中寻找模式串的字符串 strb:模式串 <算法导论>上面包括严蔚敏老师<数据结构>,字符串下表是按从1开始,并且<数据结构>一书中貌似吧字符串的第一个字符用来储存字符串长度.这里我改成了0. maxlen :字符串的最长…
1.快速幂 计算a^b的快速算法,例如,3^5,我们把5写成二进制101,3^5=3^1*1+3^2*2+3^4*1 ll fast(ll a,ll b){ll ans=;,a=mul(a,a)))ans=mul(ans,a);return ans;}//一行快速幂 2.快速乘 当模数较大时,直接乘会爆掉long long,需要快速乘法. 即用浮点计算倍数,做差相当于计算余数模2^63的结果,然后再模一下就好了(因为余数不超过long long) typedef long long ll; ll…
Brute Force算法,时间复杂度 O(mn) def strStr(haystack, needle): m = len(haystack) n = len(needle) if n == 0: return 0 if m < n: return -1 for i in range(m - n - 1): for j in range(n): if haystack[i + j] != needle[j]: break elif j == n - 1: return i return -1…
根据最大公约数和最小公倍数求原来的两个数 题目大意,不翻译了,就是上面链接的意思. 具体思路就是要根据数论来,设a和b的GCD(最大公约数)和LCM(最小公倍数),则a/GCD*b/GCD=LCM/GCD,我们只用枚举LCM/GCD的所有质因数就可以了,然后把相应的质因数乘以GCD即可得出答案. 找素数很简单,用Miller_Rabin求素数的方法,可以多求几次提高正确率,原理就是用的费马定理:如果P是素数,则A^(p-1)mod P恒等于1,为了绕过Carmichael数,采用费马小定理:如果…
作者:Glowin链接:https://zhuanlan.zhihu.com/p/22881223来源:知乎著作权归作者所有.商业转载请联系作者获得授权,非商业转载请注明出处. 原文地址:Google Interview University 原文作者:John Washam 译文出自:掘金翻译计划 (翻译不易,欢迎 Star 支持) 译者:Aleen,Newton,bobmayuze,Jaeger,sqrthree 这是? 这是我为了从 web 开发者(自学.非计算机科学学位)蜕变至 Goog…