LightGBM算法总结 2018年08月21日 18:39:47 Ghost_Hzp 阅读数:2360 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/weixin_39807102/article/details/81912566 1 LightGBM原理 1.1 GBDT和 LightGBM对比 1.2 LightGBM 的动机 1.3 Xgboost 原理 1.4 LightGBM 优化 1.4.1 Histogram 算法 1.4.2…
LightGBM的并行优化 上一篇文章介绍了LightGBM算法的特点,总结起来LightGBM采用Histogram算法进行特征选择以及采用Leaf-wise的决策树生长策略,使其在一批以树模型为基模型的boosting算法中脱颖而出.在时间和空间上都更胜一筹,准确率也比其他模型表现得更好.这些模型在处理一般规模的数据时,单机即可以解决,然而当数据规模更大时,即需要进行分布式计算,分担每台机器(worker)的压力.这篇文章介绍LightGBM的两种并行学习算法(Feature Paralle…
ML神器:sklearn的快速使用 传统的机器学习任务从开始到建模的一般流程是:获取数据 -> 数据预处理 -> 训练建模 -> 模型评估 -> 预测,分类.本文我们将依据传统机器学习的流程,看看在每一步流程中都有哪些常用的函数以及它们的用法是怎么样的.希望你看完这篇文章可以最为快速的开始你的学习任务. 1. 获取数据 1.1 导入sklearn数据集 sklearn中包含了大量的优质的数据集,在你学习机器学习的过程中,你可以通过使用这些数据集实现出不同的模型,从而提高你的动手实践…
XGBoost——机器学习(理论+图解+安装方法+python代码) 目录 一.集成算法思想 二.XGBoost基本思想 三.MacOS安装XGBoost 四.用python实现XGBoost算法 在竞赛题中经常会用到XGBoost算法,用这个算法通常会使我们模型的准确率有一个较大的提升.既然它效果这么好,那么它从头到尾做了一件什么事呢?以及它是怎么样去做的呢? 我们先来直观的理解一下什么是XGBoost.XGBoost算法是和决策树算法联系到一起的.决策树算法在我的另一篇博客中讲过了. 一.集…
本博客默认读者对神经网络与Tensorflow有一定了解,对其中的一些术语不再做具体解释.并且本博客主要以图片数据为例进行介绍,如有错误,敬请斧正. 使用Tensorflow训练神经网络时,我们可以用多种方式来读取自己的数据.如果数据集比较小,而且内存足够大,可以选择直接将所有数据读进内存,然后每次取一个batch的数据出来.如果数据较多,可以每次直接从硬盘中进行读取,不过这种方式的读取效率就比较低了.此篇博客就主要讲一下Tensorflow官方推荐的一种较为高效的数据读取方式——tfrecor…
1.声音音频基础知识 (1)声音是由震动产生,表现为波的形式.波有频率,振幅等参数.对于声波而言:频率越大,音调越高,反之越低.振幅越大,声音越大,反之越小. (2)采样率,帧率:波是连续(无穷)的,计算机存储是离散(有限)的.要想用有限存储无限,几乎不可能.因此,要每隔一段时间对波进行一次采样.每秒采样次数采样率.长用采样率是44.1kHz(这里的1k不是1024,是1000!!!切记.). (3)采样大小,采样宽度:波每一个时刻都有一个对应的能量值,在计算机中用整数存储.通常使用16bit有…
---layout: posttitle: 2018-02-03-PY3下经典数据集iris的机器学习算法举例-零基础key: 20180203tags: 机器学习 ML IRIS python3modify_date: 2018-02-03--- # python3下经典数据集iris的机器学习算法举例-零基础说明:* 本文发布于: gitee,github,博客园* 转载和引用请指明原作者和连接及出处. 正文:* 以下内容可以拷贝到一个python3源码文件,比如较“iris_ml.py”当…
摘要 机器学习算法分类:监督学习.半监督学习.无监督学习.强化学习 基本的机器学习算法:线性回归.支持向量机(SVM).最近邻居(KNN).逻辑回归.决策树.k平均.随机森林.朴素贝叶斯.降维.梯度增强 公式.图示.案例 机器学习算法分类 机器学习算法大致可以分为: 监督学习 | Supervised learning 半监督学习 | Semi-supervised learning 无监督学习 | Unsupervised learning 强化学习 | Reinforcement learn…
参考链接:https://www.cnblogs.com/Zhi-Z/p/8728168.html 具体更详细的可以查阅周志华的西瓜书第二章,写的非常详细~ 一.机器学习性能评估指标 1.准确率(Accurary) 准确率是我们最常见的评价指标,而且很容易理解,就是被分对的样本数除以所有的样本数,通常来说,正确率越高,分类器越好. 准确率确实是一个很好很直观的评价指标,但是有时候准确率高并不能代表一个算法就好.比如某个地区某天地震的预测,假设我们有一堆的特征作为地震分类的属性,类别只有两个:0:…
前言: 找工作时(IT行业),除了常见的软件开发以外,机器学习岗位也可以当作是一个选择,不少计算机方向的研究生都会接触这个,如果你的研究方向是机器学习/数据挖掘之类,且又对其非常感兴趣的话,可以考虑考虑该岗位,毕竟在机器智能没达到人类水平之前,机器学习可以作为一种重要手段,而随着科技的不断发展,相信这方面的人才需求也会越来越大. 纵观IT行业的招聘岗位,机器学习之类的岗位还是挺少的,国内大点的公司里百度,阿里,腾讯,网易,搜狐,华为(华为的岗位基本都是随机分配,机器学习等岗位基本面向的是博士)等…