finetuning caffe】的更多相关文章

还没解决,以下是解释fine-tune 比如说,先设计出一个CNN结构.然后用一个大的数据集A,训练该CNN网络,得到网络a.可是在数据集B上,a网络预测效果并不理想(可能的原因是数据集A和B存在一些差异,比如数据来源不同导致的代表性差异).如果直接用B的一部分训练的话,数据量太小,CNN不适用. 解决方法:将数据集B分为train集和test,以a网络的参数为初始参数,以较小的学习率,以B的train集为训练数据,继续训练,得到网络b. 这样,b在B的test集中一般可实现较好的预测精度. —…
转载请注明出处,楼燚(yì)航的blog,http://www.cnblogs.com/louyihang-loves-baiyan/ 目前呢,caffe,theano,torch是当下比较流行的Deep Learning的深度学习框架,楼主最近也在做一些与此相关的事情.在这里,我主要介绍一下如何在Caffe上微调网络,适应我们自己特定的新任务.一般来说我们自己需要做的方向,比如在一些特定的领域的识别分类中,我们很难拿到大量的数据.因为像在ImageNet上毕竟是一个千万级的图像数据库,通常我们…
利用caffe生成 lmdb 格式的文件,并对网络进行FineTuning 数据的组织格式为: 首先,所需要的脚本指令路径为: /home/wangxiao/Downloads/caffe-master/examples/imagenet/ 其中,生成lmdb的文件为: create_imagenet.sh 接下来的主要任务就是修改自己的data的存放路径了. #!/usr/bin/env sh # Create the imagenet lmdb inputs # N.B. set the p…
本文主要参考caffe官方文档[<Fine-tuning a Pretrained Network for Style Recognition>](http://nbviewer.jupyter.org/github/BVLC/caffe/blob/master/examples/02-fine-tuning.ipynb) 是第二篇案例.笔者对其进行了为期一周的断断续续的研究,笔者起先对python/caffe并不了解+英语不好,阅读+理解的时间有点长,前前后后过了不下十遍终于从这第二篇文档看…
caffe finetune两种修改网络结构prototxt方法 第一种方法:将原来的prototxt中所有的fc8改为fc8-re.(若希望修改层的学习速度比其他层更快一点,可以将lr_mult改为原来的10倍或者其他倍数) 第二种方法:只修改name,如下例子所示: layer { name: "fc8-re" #原来为"fc8" type: "InnerProduct" bottom: "fc7" top: "…
1.使用预训练模型,需要修改训练的prototxt,将layer name改为与要使用模型的layer name相同即可. Borrowing Weights from a Pretrained Network To borrow the weights of an already trained model, we need to do two things: Rename our layer to match the name of the original model's layer. T…
在经过前面Caffe框架的搭建以及caffe基本框架的了解之后,接下来就要回到正题:使用caffe来进行模型的训练. 但如果对caffe并不是特别熟悉的话,从头开始训练一个模型会花费很多时间和精力,需要对整个caffe框架有一个很清楚的了解,难度比较高:同时,在使用数据迭代训练自己模型时会耗费很多计算资源.对于单GPU或者没有大的GPU计算能力的研究者会比较困难.所以,使用已经训练好的caffe模型来进行finetuning就会是一个比较好的选择. 一来,finetuning的过程和训练的过程步…
在经过前面Caffe框架的搭建以及caffe基本框架的了解之后,接下来就要回到正题:使用caffe来进行模型的训练. 但如果对caffe并不是特别熟悉的话,从头开始训练一个模型会花费很多时间和精力,需要对整个caffe框架有一个很清楚的了解,难度比较高:同时,在使用数据迭代训练自己模型时会耗费很多计算资源.对于单GPU或者没有大的GPU计算能力的研究者会比较困难.所以,使用已经训练好的caffe模型来进行finetuning就会是一个比较好的选择. 一来,finetuning的过程和训练的过程步…
http://blog.csdn.net/u010402786/article/details/70141261 https://zhuanlan.zhihu.com/p/22624331…
caffe的运行提供三种接口:C++接口(命令行).Python接口和matlab接口.本文先对命令行进行解析,后续会依次介绍其它两种接口. caffe的C++主程序(caffe.cpp)放在根目录下的tools文件夹内,当然还有一些其它的功能文件,如:convert_imageset.cpp,train_net.cpp,test_net.cpp等也放在这个文件夹内.经过编译后,这些文件都被编译成了可执行文件,放在了./build/tools/文件夹内.因此我们要执行caffe程序,都需要加./…