1. 摘要 在使用非常小(3×3)的卷积核情况下,作者对逐渐增加网络的深度进行了全面的评估,通过设置网络层数达 16-19 层,最终效果取得了显著提升. 2. 介绍 近来,卷积神经网络在大规模图像识别领域取得了巨大的成功,这一方面归功于大规模公开数据的出现,另一方面则是计算能力的提升.在 AlexNet 的基础上大家进行了很多的尝试来进行改进,一条线是在卷积层利用更小的感知窗口和更小的步长,另一条线则是在整张图片上进行训练然后测试的时候采用多尺度.在本文中,作者则集中于卷积神经网络的另一个方面-…
0 - ABSTRACT 在这个工作中,我们研究了卷积网络的深度对于它在大规模图像识别设置上的准确率的效果.我们的主要贡献是对使用非常小的卷积核(3×3)来增加深度的网络架构进行彻底评估,这说明了通过将深度增加到16-19层能够比之前最好的业界水平更好.这些发现是我们参加ImageNet Challenge 2014的基础,在这个比赛中我们团队在定位和分类追踪任务上分别获得了第一和第二的名次.我们也表明了我们的模型可以很好的扩展到其他数据集上,并都达到了最佳的水平.我们已经将我们的两个效果最好的…
Large Scale Visual Recognition Challenge 2015 (ILSVRC2015) Legend: Yellow background = winner in this task according to this metric; authors are willing to reveal the method White background = authors are willing to reveal the method Grey background…
Very Deep Convolutional Networks for Large-Scale Image Recognition Karen Simonyan[‡] & Andrew Zisserman[§] Visual Geometry Group, Department of Engineering Science, University of Oxford {karen,az}@robots.ox.ac.uk 用于大规模图像识别的深度卷积网络 Karen Simonyan[‡] &am…
Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun  The 13th European Conference on Computer Vision (ECCV), 2014 声明:本文所有图片均来自原始文章,自己的理解也未必正确,请查看原图并拍砖 本文的两个亮点: 1. 多尺度训练CN…
2014-VGG-<Very deep convolutional networks for large-scale image recognition>翻译 原文:http://xueshu.baidu.com/s?wd=paperuri%3A%282801f41808e377a1897a3887b6758c59%29&filter=sc_long_sign&tn=SE_xueshusource_2kduw22v&sc_vurl=http%3A%2F%2Farxiv.…
Very Deep Convolutional Networks for Large-Scale Image Recognition 转载请注明:http://blog.csdn.net/stdcoutzyx/article/details/39736509 这篇论文是今年9月份的论文[1],比較新,当中的观点感觉对卷积神经网络的參数调整大有指导作用,特总结之.关于卷积神经网络(Convolutional Neural Network, CNN),笔者后会作文阐述之,读者若心急则或可用谷歌百度一…
Spatial pyramid pooling in deep convolutional networks for visual recognition 作者: Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 引用: He, Kaiming, et al. "Spatial pyramid pooling in deep convolutional networks for visual recognition." IEEE…
http://www.dengfanxin.cn/?p=403 原文地址 我对物体检测的一篇重要著作SPPNet的论文的主要部分进行了翻译工作.SPPNet的初衷非常明晰,就是希望网络对输入的尺寸更加灵活,分析到卷积网络对尺寸并没有要求,固定尺寸的要求完全来源于全连接层部分,因而借助空间金字塔池化的方法来衔接两者,SPPNet在检测领域的重要贡献是避免了R-CNN的变形.重复计算等问题,在效果不衰减的情况下,大幅提高了识别速度.   用于视觉识别的深度卷积网络空间金字塔池化方法 Spatial…
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf SPP的GitHub地址:https://github.com/yueruc…