常用深度学习框--Caffe/ TensorFlow / Keras/ PyTorch/MXNet 一.概述 近几年来,深度学习的研究和应用的热潮持续高涨,各种开源深度学习框架层出不穷,包括TensorFlow,Keras,MXNet,PyTorch,CNTK,Theano,Caffe,DeepLearning4,Lasagne,Neon,等等.Google,Microsoft等商业巨头都加入了这场深度学习框架大战,当下最主流的框架当属TensorFlow,Keras,MXNet,PyTorch…
第1章 PyTorch与深度学习 深度学习的应用 接近人类水平的图像分类 接近人类水平的语音识别 机器翻译 自动驾驶汽车 Siri.Google语音和Alexa在最近几年更加准确 日本农民的黄瓜智能分拣 肺癌检测 准确度高于人类的语言翻译 读懂图片中的图像含义 现今深度学习应用中最受欢迎的技术和出现的时间点 技术 年份 神经网络 1943 反向传播 20世纪60年代初期 卷积神经网络 1979 循环神经网络 1980 长短期记忆网络 1997 深度学习过去的叫法 20世纪70年代叫控制论(cyb…
欢迎来到我的博客! 以下链接均是日常学习,偶然得之,并加以收集整理,感兴趣的朋友可以多多访问和学习.如果以下内容对你有所帮助,不妨转载和分享.(Update on 5,November,2019) 1.PyTorch模型训练实用教程 https://github.com/TingsongYu/PyTorch_Tutorial 注:该教程主要内容为利用PyTorch训练模型可能涉及到的方法及函数,包括数据增强方法(22个).权值初始化方法(10个).损失函数(17个).优化器(6个)及tensor…
英特尔与 Facebook 曾联手合作,在多卡训练工作负载中验证了 BFloat16 (BF16) 的优势:在不修改训练超参数的情况下,BFloat16 与单精度 32 位浮点数 (FP32) 得到了相同的准确率.现在,英特尔发布了第三代英特尔 至强 可扩展处理器(代号 Cooper Lake),该处理器集成了支持 BF16 的英特尔 深度学习加速技术(英特尔 DL Boost),可大幅提升训练和推理能力,并且也支持去年推出的英特尔 深度学习 INT8 加速技术. 英特尔和 Facebook 不…
配置环境总体思路 1.依据python版本选择对应Anaconda版本: 2.依据显卡驱动版本选择对应的CUDA版本: 3.依据CUDA版本选择对应的cudnn和pytorch版本. 一.Anaconda安装 1.下载地址 1.官网  https://www.anaconda.com/products/individual 2.清华源  https://mirrors.tuna.tsinghua.edu.cn/anaconda/archive/ 注:若官网下载速度慢,可用清华源下载:注意操作系统…
目录 1. 快速入门PYTORCH 1.1. 什么是PyTorch 1.1.1. 基础概念 1.1.2. 与NumPy之间的桥梁 1.2. Autograd: Automatic Differentiation 1.2.1. Tensor 1.2.2. Gradients 1.3. Neural Networks 1.3.1. Defind the network 1.3.2. Process inputs and call backward 1.3.3. Loss function 1.3.4…
本篇博客代码来自于<动手学深度学习>pytorch版,也是代码较多,解释较少的一篇.不过好多方法在我以前的博客都有提,所以这次没提.还有一个原因是,这篇博客的代码,只要好好看看肯定能看懂(前提是python语法大概了解),这是我不加很多解释的重要原因. K折交叉验证实现 def get_k_fold_data(k, i, X, y): # 返回第i折交叉验证时所需要的训练和验证数据,分开放,X_train为训练数据,X_valid为验证数据 assert k > 1 fold_size…
概述 迁移学习可以改变你建立机器学习和深度学习模型的方式 了解如何使用PyTorch进行迁移学习,以及如何将其与使用预训练的模型联系起来 我们将使用真实世界的数据集,并比较使用卷积神经网络(CNNs)构建的模型和使用迁移学习构建的模型的性能 介绍 我去年在一个计算机视觉项目中工作,我们必须建立一个健壮的人脸检测模型. 考虑到我们拥有的数据集的大小,从头构建一个模型是一个挑战.从头构建将是一个耗时又消耗计算资源的方案.由于时间紧迫,我们必须尽快找出解决办法. 这就是迁移学习拯救我们的时候.这是一个…
Pytorch线性规划模型 学习笔记(一) Pytorch视频学习资料参考:<PyTorch深度学习实践>完结合集 Pytorch搭建神经网络的四大部分 1. 准备数据 Prepare dataset 准备数据包括数据的读取加载并转换为torch框架下识别的tensor格式,注意数据的dtype为float32格式 2. 设计模型 Design model using class 网络的基本框架部分,包括自定义的网络layer结构,注意维度的变换要一致,另外,该类中还应包括forward部分…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/37 本文地址:http://www.showmeai.tech/article-detail/267 声明:版权所有,转载请联系平台与作者并注明出处 收藏ShowMeAI查看更多精彩内容 本系列为 斯坦福CS231n <深度学习与计算机视觉(Deep Learning for Computer Vision)>的全套学习笔记,对应的课程视频可以在 这里 查看.更多资料获取方式见文末…