The key mechanism of transformer-based models is cross-attentions, which implicitly form graphs over tokens and act as diffusion operators to facilitate information propagation through the graph for question-answering that requires some reasoning ove…
论文信息 论文标题:Accurate Learning of Graph Representations with Graph Multiset Pooling论文作者:Jinheon Baek, Minki Kang, Sung Ju Hwang论文来源:2021, ICLR论文地址:download 论文代码:download 1 Introduction 图池化存在的问题:获得的图表示需进一步使用池化函数将一组节点表示映射为紧凑的形式.对所有节点表示的简单求和或平均都平等地考虑所有节点特征…
论文题目:<GraRep: Learning Graph Representations with Global Structural Information>发表时间:  CIKM论文作者:  Shaosheng Cao; Wei Lu;  Qiongkai Xu论文地址:  DownloadGithub:      Go Abstract 在本文中,我们提出了一种新的学习加权图顶点表示的GraRep模型.该模型学习低维向量来表示出现在图中的顶点,与现有的工作不同,它将图的全局结构信息集成到…
论文信息 论文标题:Learning Graph Augmentations to Learn Graph Representations论文作者:Kaveh Hassani, Amir Hosein Khasahmadi论文来源:2022, arXiv论文地址:download论文代码:download 1 Introduction 我们引入了 LG2AR,学习图增强来学习图表示,这是一个端到端自动图增强框架,帮助编码器学习节点和图级别上的泛化表示.LG2AR由一个学习增强参数上的分布的概率策…
Learning Conditioned Graph Structures for Interpretable Visual Question Answering 2019-05-29 00:29:43 Paper:http://papers.nips.cc/paper/8054-learning-conditioned-graph-structures-for-interpretable-visual-question-answering.pdf Code:https://github.com…
一.基本信息 论文题目:<DeepWalk: Online Learning of Social Representations>发表时间:  KDD 2014论文作者:  Bryan Perozzi.Rami Al-Rfou.Steven Skiena论文地址:  https://dl.acm.org/citation.cfm?id=2623732 二.前言 普通的邻接矩阵在存储的关系很多时,纬度将变得很高,而进行矩阵分解是一个相当费时复杂的过程,因此通过矩阵分解的方法进行网络的表示学习,目…
论文信息 论文标题:Node Representation Learning in Graph via Node-to-Neighbourhood Mutual Information Maximization论文作者:Wei Dong, Junsheng Wu, Yi Luo, Zongyuan Ge, Peng Wang论文来源:CVPR 2022论文地址:download论文代码:download 1 摘要 在本工作中,我们提出了一种简单而有效的自监督节点表示学习策略,通过直接最大化节点的…
Unsupervised Learning of Video Representations using LSTMs Note here: it's a learning notes on new LSTMs architecture used as an unsupervised learning way of video representations. (More unsupervised learning related topics, you can refer to: Learnin…
Unsupervised Learning of Visual Representations using Videos Note here: it's a learning note on Prof. Gupta's novel work published on ICCV2015. It's really exciting to know how unsupervised learning method can contribute to learn visual representatio…
Learning Cross-Modal Deep Representations for Robust Pedestrian Detection 2017-04-11  19:40:22  Motivation: 本文主要是考虑了在光照极端恶劣的情况下,如何充分的利用 thermal data 进行协助学习提升 可见光图像的 特征表达能力,而借鉴了 ICCV 2015 年的一个文章,称为:监督迁移的方法,以一种模态的特征为 label,以监督学习的方式实现无监督学习.说到这里可能比较让人糊涂,…