微软研究院AI头条 https://mp.weixin.qq.com/s/SAz5eiSOLhsdz7nlSJ1xdA 预见未来丨机器学习:未来十年研究热点 机器学习组 微软研究院AI头条 昨天 编者按:自1998年成立以来,微软亚洲研究院一直致力于推动计算机科学领域的前沿技术发展.在建院20周年之际,我们特别邀请微软亚洲研究院不同领域的专家共同撰写“预见未来”系列文章,以各自领域的前瞻视角,从机器学习.计算机视觉.系统架构.图形学.自然语言处理等多个方向出发,试图描绘一幅未来科技蓝图. 本文中…
当给自己拍一张美美的自拍照时,却发现照片中自己的脸不够瘦.眼睛不够大.表情不够丰富可爱-如果此时能够一键美颜瘦脸并且添加可爱的贴纸的话,是不是很棒? 当家里的小孩观看iPad屏幕时间过长或者眼睛离屏幕距离过近,家长没能时刻关注到时,如果有一款可以实现parent control的应用,那是不是很方便?面对以上问题,华为机器学习服务(ML Kit)的人脸检测功能轻松帮你搞定! 华为机器学习服务的人脸检测功能可以对人脸多达855个关键点进行检测,从而返回人脸的轮廓.眉毛.眼睛.鼻子.嘴巴.耳朵等部位…
简述 机器学习是人工智能的一种实现方式:深度学习是一种实现机器学习的技术,或者说是一种特殊的机器学习方法,可以说广义上的机器学习也包括了深度学习,三者的关系如下图所示: 从判别垃圾邮件到无人驾驶技术,机器学习在众多领域都有着广泛的应用,机器学习成就了今天的人工智能. 机器学习的本质 在以往的工程项目中,我们认为计算机程序只能严格执行我们让它做的事情——输入数据,输出计算结果.为了得出正确的结果,需要在程序中写大量的循环和判断,但是对于某些问题,这种方式将无法处理,比如如何判断一张照片中有没有大树…
我们都知道机器学习是一门综合性极强的研究课题,对数学知识要求很高.因此,对于非学术研究专业的程序员,如果希望能入门机器学习,最好的方向还是从实践触发. 我了解到Python的生态对入门机器学习很有帮助.因此希望以此作为突破口入门机器学习. 我将会记录一个系列的学习与实践记录.记录内容主要参考Youtube中sentdex发布的视频,有兴趣的读者可以自己FQ到油管看一下. 下面介绍一下我将如何通过Python入门机器学习. 学习Python基本语法 首先我在Python官网找到入门教程,快速过了一…
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.html 前言 这篇博客主要记录了Andrew Ng课程第6章机器学习系统的设计,Andrew用他的丰富经验讲述了如何有效.耗时少地实现一个机器学习系统,内容包括误差分析,误差度量,查准率和查全率等等 I 首先要做什么 以一个垃圾邮件分类器算法为例,为了解决这样一个问题,我们首先要做的决定是如何选择并…
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN 100天搞定机器学习|Day8 逻辑回归的数学原理 100天搞定机器学习|Day9-12 支持向量机 100天搞定机器学习|Day11 实现KNN 100天搞定机器学习|Day13-14 SVM的实现 100天搞定机器学习|Day15 朴素贝叶斯 Day19,Avik-J…
ML.NET 是一个跨平台的开源机器学习框架,它可以使 .NET 开发人员更容易的开展机器学习工作. ML.NET 允许 .NET 开发人员开发自己的模型,即使没有机器学习的开发经验,也可以很容易的将自定义的机器学习模型嵌入到其应用程序中. ML.NET 最初是在 microsoft research 中被开发的, 在过去十年里它已经发展成为一个重要的框架, 并在 microsoft 的许多产品组 (如 windows.bing.powerpoint.excel 等) 中被广泛使用. ML.NE…
吴恩达(Andrew Ng)机器学习课程:课程主页 由于博客编辑器有些不顺手,所有的课程笔记将全部以手写照片形式上传.有机会将在之后上传课程中各个ML算法实现的Octave版本. Linear Regression with One Variable Linear Algebra Review Linear Regression with Multiple Variables Octave/Matlab Tutorial…
概述 移动端所说的AI,通常是指"机器学习". 定义:机器学习其实就是研究计算机怎样模拟人类的学习行为,以获取新的知识或技能,并重新组织已有的知识结构使之不断改善自身.从实践的意义上来说,机器学习是一类从数据中自动分析获得规律,并利用规律对未知数据进行预测的算法. 目前,机器学习已经有了十分广泛的应用,如:数据挖掘.计算机视觉.自然语言处理.语音和手写识别.生物特征识别.搜索引擎.医学诊断.检测信用卡欺诈.证券市场分析.DNA序列测序.战略游戏与机器人运用. 机器学习 机器学习包含了几…
ML.NET是Microsoft最近发布的用于机器学习的开源,跨平台,代码优先的框架.尽管对我们来说是一个新的框架,但该框架的根源是Microsoft Research,并且在过去十年中已被许多内部团队使用,包括那些您几乎肯定听说过的产品的开发人员-Microsoft Windows,Office和Bing,仅举几例. ML.NET使.NET开发人员可以轻松地将机器学习集成到其应用程序中,无论是控制台,桌面还是Web.它涵盖了机器学习活动的整个生命周期,从模型的训练和评估到使用和部署.支持许多典…