python的随机森林模型调参】的更多相关文章

一.一般的模型调参原则 1.调参前提:模型调参其实是没有定论,需要根据不同的数据集和不同的模型去调.但是有一些调参的思想是有规律可循的,首先我们可以知道,模型不准确只有两种情况:一是过拟合,而是欠拟合.过拟合是指模型过于复杂,欠拟合是指模型过于简单. 2.查找资料:调参时应该知道每一个参数的默认值是多少,其增大或者减小会使模型更加复杂还是更加简单. 3.调参可以使用两种方法:1.学习曲线 2.网格搜索 学习曲线只能对参数一个一个进行调整,可以观察参数的增大或者减小具体对模型产生怎样的影响:网格搜…
用Python实现随机森林算法,深度学习 拥有高方差使得决策树(secision tress)在处理特定训练数据集时其结果显得相对脆弱.bagging(bootstrap aggregating 的缩写)算法从训练数据的样本中建立复合模型,可以有效降低决策树的方差,但树与树之间有高度关联(并不是理想的树的状态). 随机森林算法(Random forest algorithm)是对 bagging 算法的扩展.除了仍然根据从训练数据样本建立复合模型之外,随机森林对用做构建树(tree)的数据特征做…
TF-IDF模型调参 1. 调TfidfVectorizer的参数 ngram_range, min_df, max_df: 上一篇博客调了ngram_range这个参数,得出了ngram_range=(1, 4)时效果最好这个结论,并在线上验证了下. 本篇博客继续调其他的参数.考虑到训练的速度,先将ngram_range设置为(1, 1),调min_df: min_df train-mlogloss val-mlogloss 1 0.103793 0.406085 2 0.1091895 0.…
这篇文章仅仅是为了帮助自己理解在分布式环境下是如何进行随机森林模型构建的,文章中记录的内容可能不太准确,仅仅是大致上的一个理解. 1.特征切分点统计 不管是连续取值型特征还是离散取值型特征,分裂树结点时都需要寻找最优特征的最优切分点.离散型特征还好一点,对连续型特征,其取值情况多,若是遍历所有数据样本,寻找特征的所有取值情况,然后找出全部的候选分割点,计算每个候选分割点下分割的效果,这个过程的空间和时间的耗费非常大.spark中采取的策略是,在数据样本集中进行随机采样,获取一定数量的样本,依据这…
使用像Scikit-Learn这样的库,现在很容易在Python中实现数百种机器学习算法.这很容易,我们通常不需要任何关于模型如何工作的潜在知识来使用它.虽然不需要了解所有细节,但了解机器学习模型是如何工作的仍然有用.这使我们可以在模型表现不佳时进行诊断,或者解释模型如何做出决策,如果我们想让别人相信我们的模型,这是至关重要的. 在本文中,我们将介绍如何在Python中构建和使用Random Forest.除了查看代码之外,我们还将尝试了解此模型的工作原理.因为由许多决策树组成的随机森林,我们首…
GridSearchCV,它存在的意义就是自动调参,只要把参数输进去,就能给出最优化的结果和参数.但是这个方法适合于小数据集,一旦数据的量级上去了,很难得出结果.这个时候就是需要动脑筋了.数据量比较大的时候可以使用一个快速调优的方法——坐标下降.它其实是一种贪心算法:拿当前对模型影响最大的参数调优,直到最优化:再拿下一个影响最大的参数调优,如此下去,直到所有的参数调整完毕.这个方法的缺点就是可能会调到局部最优而不是全局最优,但是省时间省力,巨大的优势面前,还是试一试吧,后续可以再拿bagging…
Colab连接与数据预处理 Colab连接方法见上一篇博客 数据预处理: import pandas as pd import pickle import numpy as np # 训练数据和测试数据路径 train_path = './security_train.csv' test_path = './security_test.csv' # 将csv格式的训练数据处理为txt文本,只包含文件标签和api序列 def read_train_file(path): labels = [] #…
实现本文的文本数据可以在THUCTC下载也可以自己手动爬虫生成, 本文主要参考:https://blog.csdn.net/hao5335156/article/details/82716923 nb表示朴素贝叶斯 rf表示随机森林 lg表示逻辑回归 初学者(我)通过本程序的学习可以巩固python基础,学会python文本的处理,和分类器的调用.方便接下来的机器学习的学习. 各个参数直观的含义: # -*- coding: utf-8 -*- """ Created on…
代码实现: # -*- coding: utf-8 -*- """ Created on Tue Sep 4 09:38:57 2018 @author: zhen """ from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import accur…
# daal4py Decision Forest Classification Training example Serialization import daal4py as d4p import numpy as np import pickle from sklearn.datasets import fetch_mldata from sklearn.model_selection import train_test_split def get_mnist(): mnist = fet…