文章大纲 一.Hadoop是什么二.storm是什么三.Spark Streaming是什么四.Spark与storm比较五.参考文章   一.Hadoop是什么 1. 简介 Hadoop是一个由Apache基金会所开发的分布式系统基础架构.用户可以在不了解分布式底层细节的情况下,开发分布式程序.充分利用集群的威力进行高速运算和存储.[1] Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS.HDFS有高容错性的特点,并且设计用来部…
文章大纲 一.Netty基础介绍二.Netty代码实战三.项目源码下载四.参考文章   一.Netty基础介绍 1. 简介 官方定义为:”Netty 是一款异步的事件驱动的网络应用程序框架,支持快速地开发可维护的高性能的面向协议的服务器和客户端” 2. 主要特性 Netty有很多重要的特性,主要特性如下:(1)优雅的设计(2)统一的API接口,支持多种传输类型,例如OIO,NIO(3)简单而强大的线程模型(4)丰富的文档(5)卓越的性能(6)拥有比原生Java API 更高的性能与更低的延迟(7…
原文链接:Storm和Spark Streaming框架对比 Storm和Spark Streaming两个都是分布式流处理的开源框架.但是这两者之间的区别还是很大的,正如你将要在下文看到的. 处理模型以及延迟 虽然两框架都提供了可扩展性(scalability)和可容错性(fault tolerance),但是它们的处理模型从根本上说是不一样的.Storm可以实现亚秒级时延的处理,而每次只处理一条event,而Spark Streaming可以在一个短暂的时间窗口里面处理多条(batches)…
[注]该系列文章以及使用到安装包/测试数据 可以在<倾情大奉送--Spark入门实战系列>获取 .Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafk.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理…
1.Spark Streaming简介 1.1 概述 Spark Streaming 是Spark核心API的一个扩展,可以实现高吞吐量的.具备容错机制的实时流数据的处理.支持从多种数据源获取数据,包括Kafka.Flume.Twitter.ZeroMQ.Kinesis 以及TCP sockets,从数据源获取数据之后,可以使用诸如map.reduce.join和window等高级函数进行复杂算法的处理.最后还可以将处理结果存储到文件系统,数据库和实时仪表盘.在“One Stack rule t…
转自:http://www.open-open.com/lib/view/open1426065900123.html 许多分布式计算系统都可以实时或接近实时地处理大数据流.本文将对三种Apache框架分别进行简单介绍,然后尝试快速.高度概述其异同. Apache Storm 在Storm中, 先要设计一个用于实时计算的图状结构,我们称之为拓扑(topology).这个拓扑将会被提交给集群,由集群中的主控节点(master node)分发代码,将任务分配给工作节点(worker node)执行.…
前言spark与hadoop的比较我就不多说了,除了对硬件的要求稍高,spark应该是完胜hadoop(Map/Reduce)的.storm与spark都可以用于流计算,但storm对应的场景是毫秒级的统计与计算,而spark(stream)对应的是秒级的.这是主要的差别.一般很少有对实时要求那么高的场景(哪怕是在电信领域),如果统计与计算的周期是秒级的话,spark的性能是要优于storm的. Storm风暴和Spark Streaming火花流都是分布式流处理的开源框架.这里将它们进行比较并…
<?xml version="1.0" encoding="UTF-8"?> <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 htt…
大数据分析处理架构图 数据源: 除该种方法之外,还可以分为离线数据.近似实时数据和实时数据.按照图中的分类其实就是说明了数据存储的结构,而特别要说的是流数据,它的核心就是数据的连续性和快速分析性: 计算层: 内存计算中的Spark是UC Berkeley的最新作品,思路是利用集群中的所有内存将要处理的数据加载其中,省掉很多I/O开销和硬盘拖累,从而加快计算.而Impala思想来源于Google Dremel,充分利用分布式的集群和高效存储方式来加快大数据集上的查询速度,这也就是我上面说到的近似实…
对于一个成熟的消息中间件而言,消息格式不仅关系到功能维度的扩展,还牵涉到性能维度的优化.随着Kafka的迅猛发展,其消息格式也在不断的升级改进,从0.8.x版本开始到现在的1.1.x版本,Kafka的消息格式也经历了3个版本.本文这里主要来讲述Kafka的三个版本的消息格式的演变,文章偏长,建议先关注后鉴定. Kafka根据topic(主题)对消息进行分类,发布到Kafka集群的每条消息都需要指定一个topic,每个topic将被分为多个partition(分区).每个partition在存储层…