本文首发于个人博客https://kezunlin.me/post/95370db7/,欢迎阅读最新内容! keras multi gpu training Guide multi_gpu_model import tensorflow as tf from keras.applications import Xception from keras.utils import multi_gpu_model import numpy as np G = 8 batch_size_per_gpu =…
model = Model(inputs=[v_i, v_j], outputs=output_list) model = multi_gpu_model(model,4) model.compile(....) 主要就是第二句话中的 multi_gpu_model函数,会把数据和模型分到多个gpu上执行有个坑,就是整个程序导入keras时要么全部from keras import ...,要么全部 from tensorflow.python.keras import ...,不能tensor…
Keras 是一个高层神经网络API,Keras是由纯Python编写而成并基于TensorFlow,Theano以及CNTK后端.Keras为支持快速实验而生,能够将我们的idea迅速转换为结果.好了不吹了,下面继续学习Keras的一些用法,其中这篇博客包括了Keras如何指定显卡且限制显存用量,还有一些常见函数的用法及其问题,最后是使用Keras进行的练习. Keras如何指定显卡且限制显存用量 Keras在使用GPU的时候有个特点,就是默认全部占满显存.若单核GPU也无所谓,若是服务器GP…
今天整理了自己所写的关于Keras的博客,有没发布的,有发布的,但是整体来说是有点乱的.上周有空,认真看了一周Keras的中文文档,稍有心得,整理于此.这里附上Keras官网地址: Keras英文文档:https://keras.io/#installationKeras Keras中文文档:https://keras.io/zh/ 下面回顾一下自己以前写的有关Keras的博客: Python机器学习笔记:利用Keras进行分类预测 Python机器学习笔记:使用Keras进行回归预测 首先是上…
这里需要说明一下,笔者不建议在Windows环境下进行深度学习的研究,一方面是因为Windows所对应的框架搭建的依赖过多,社区设定不完全:另一方面,Linux系统下对显卡支持.内存释放以及存储空间调整等硬件功能支持较好.如果您对Linux环境感到陌生,并且大多数开发环境在Windows下更方便操作的话,希望这篇文章对您会有帮助. 关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i…
关于计算机的硬件配置说明 推荐配置 如果您是高校学生或者高级研究人员,并且实验室或者个人资金充沛,建议您采用如下配置: 主板:X299型号或Z270型号 CPU: i7-6950X或i7-7700K 及其以上高级型号 内存:品牌内存,总容量32G以上,根据主板组成4通道或8通道 SSD: 品牌固态硬盘,容量256G以上 显卡:NVIDIA GTX TITAN(XP) NVIDIA GTX 1080ti.NVIDIA GTX TITAN.NVIDIA GTX 1080.NVIDIA GTX 107…
资料原文 一.概述思路 假设一台机器上有个GPU.给定需要训练的模型,每个GPU将分别独立维护一份完整的模型参数. 在模型训练的任意一次迭代中,给定一个小批量,我们将该批量中的样本划分成份并分给每个GPU一份. 然后,每个GPU将分别根据自己分到的训练数据样本和自己维护的模型参数计算模型参数的梯度. 接下来,我们把k个GPU上分别计算得到的梯度相加,从而得到当前的小批量梯度. 之后,每个GPU都使用这个小批量梯度分别更新自己维护的那一份完整的模型参数. 二.网络以及辅助函数 使用“卷积神经网络—…
前言 如何对现有的程序进行并行优化,是 GPU 并行编程技术最为关注的实际问题.本文将提供几种优化的思路,为程序并行优化指明道路方向. 优化前准备 首先,要明确优化的目标 - 是要将程序提速 2 倍?还是 10 倍?100倍?也许你会不假思索的说当然是提升越高越好. 但这里存在一个优化成本的问题.在同样的技术水平硬件水平下,提升 2 倍也许只要一个下午的工作量,但提高 10 倍可能要考虑到更多的东西,也许是一周的工作量.提高 100 倍, 1000 倍需要的成本,时间就更多了. 然后,需要将这个…
前言 CPU 的并行编程技术,也是高性能计算中的热点,也是今后要努力学习的方向.那么它和 GPU 并行编程有何区别呢? 本文将做出详细的对比,分析各自的特点,为将来深入学习 CPU 并行编程技术打下铺垫. 区别一:缓存管理方式的不同 GPU:缓存对程序员不透明,程序员可根据实际情况操纵大部分缓存 (也有一部分缓存是由硬件自行管理). CPU:缓存对程序员透明.应用程序员无法通过编程手段操纵缓存. 区别二:指令模型的不同 GPU:采用 SIMT - 单指令多线程模型,一条指令配备一组硬件,对应32…
前言 GPU 是如何实现并行的?它实现的方式较之 CPU 的多线程又有什么分别?本文将做一个较为细致的分析. GPU 并行计算架构 GPU 并行编程的核心在于线程,一个线程就是程序中的一个单一指令流,一个个线程组合在一起就构成了并行计算网格,成为了并行的程序,下图展示了多核 CPU 与 GPU 的计算网格: 二者的区别将在后面探讨. 下图展示了一个更为细致的 GPU 并行计算架构: 该图表示,计算网格由多个流处理器构成,每个流处理器又包含 n 多块. 下面对 GPU 计算网格中的一些概念做细致分…