机器学习诊断(Machine learning diagnostic) Diagnostic : A test that you can run to gain insight what is / isn't working with a learning algorithm, and gain guidance as to how best to improve its performance. Diagnostics can take time to implement, but doing…
本博客是针对Andrew Ng在Coursera上的machine learning课程的学习笔记. 目录 在大数据集上进行学习(Learning with Large Data Sets) 随机梯度下降(Stochastic Gradient Descent) 小堆梯度下降(Mini-Batch Gradient Descent) 保证随机GD的收敛与学习速率的选择 在线学习(Online Learning) Map Reduce 和 数据并行化 在大数据集上进行学习(Learning wit…
Week1 Bird recognition in the city of Peacetopia (case study)( 和平之城中的鸟类识别(案例研究)) 1.Problem Statement This example is adapted from a real production application, but with details disguised to protect confidentiality. (问题陈述:这个例子来源于实际项目,但是为了保护机密性,我们会对细节…
11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器 学习系统时,你将遇到的主要问题.同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议.下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的 这些东西是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间. 本周以一个垃圾邮件…
11.1  首先要做什么 11.2  误差分析 11.3  类偏斜的误差度量 11.4  查全率和查准率之间的权衡 11.5  机器学习的数据 11.1  首先要做什么 在接下来的视频将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器学习系统时,将遇到的主要问题.同时会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议.下面的课程讲的东西数学性不强,但是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间. 本周以一个垃圾邮件分类器算法为例进行讨论. 为了解决这样一个问题,首先…
第一周 机器学习(ML)策略(1)(ML strategy(1)) 1.1 为什么是 ML 策略?(Why ML Strategy?) 希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法,可以指引朝着最有希望的方向前进.这门课中,我会分享我在搭建和部署大量深度学习产品时学到的经验和教训.比如说,很多大学深度学习课程很少提到这些策略.事实上,机器学习策略在深度学习的时代也在变化,因为现在对于深度学习算法来说能够做到的事情,比上一代机器学习算法大不一样. 1.2 正交化(Orthogon…
Python机器学习 机器学习,如今最令人振奋的计算机领域之一.看看那些大公司,Google.Facebook.Apple.Amazon早已展开了一场关于机器学习的军备竞赛.从手机上的语音助手.垃圾邮件过滤到逛淘宝时的物品推荐,无一不用到机器学习技术. 如果你对机器学习感兴趣,甚至是想从事相关职业,那么这本书非常适合作为你的第一本机器学习资料.市面上大部分的机器学习书籍要么是告诉你如何推导模型公式要么就是如何代码实现模型算法,这对于零基础的新手来说,阅读起来相当困难.而这本书,在介绍必要的基础概…
本章介绍了机器学习的一些基本概念,已经应用场景.这部分知识在其它地方也经常看到,不再赘述. 这里只记录一些作者提到的,有趣的知识点. 回归(regression)名字的来源:这是由Francis Galton引入的一个统计学术语,当时他在研究这一现象:个子很高的人,其子女一般会比他们低.由于孩子是变低的,Francis Galton称之为:向平均值的回归(regression to the mean).从此他所使用的这种用于分析变量之间相关性的研究方法,被称作回归. 在机器学习中,一个属性(at…
11.1 首先要做什么 在接下来的视频中,我将谈到机器学习系统的设计.这些视频将谈及在设计复杂的机器学习系统时,你将遇到的主要问题.同时我们会试着给出一些关于如何巧妙构建一个复杂的机器学习系统的建议.下面的课程的的数学性可能不是那么强,但是我认为我们将要讲到的这些东西是非常有用的,可能在构建大型的机器学习系统时,节省大量的时间. 本周以一个垃圾邮件分类器算法为例进行讨论. 为了解决这样一个问题,我们首先要做的决定是如何选择并表达特征向量…
一.随机梯度下降算法 之前了解的梯度下降是指批量梯度下降:如果我们一定需要一个大规模的训练集,我们可以尝试使用随机梯度下降法(SGD)来代替批量梯度下降法. 在随机梯度下降法中,我们定义代价函数为一个单一训练实例的代价: 随机梯度下降算法为:首先对训练集随机“洗牌”,然后: 下面是随机梯度下降算法的过程以及和批量梯度下降算法的异同: 随机梯度下降算法是先只对第1个训练样本计算一小步的梯度下降,即这个过程包括调参过程,然后转向第2个训练样本,对第2个训练样本计算一小步的梯度下降,这个过程也包括调参…