5152. Brute-force Algorithm EXTREME Problem code: BFALG Please click here to download a PDF version of the contest problems. The problem is problem B in the PDF. But the data limits is slightly modified: 1≤P≤1000000 in the original description, but i…
费马平方和定理 费马平方和定理的表述是:奇素数能表示为两个平方数之和的充分必要条件是该素数被4除余1. 1. 如果两个整数都能表示为两个平方数之和的形式,则他们的积也能表示为两个平方数之和的形式. $$\begin{aligned}\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) &=a^{2} c^{2}+a^{2} d^{2}+b^{2} c^{2}+b^{2} d^{2} \\ &=\left(a^{2} c^{2}+b^{2} d^{…
3969 [Mz]平方和  时间限制: 1 s  空间限制: 64000 KB  题目等级 : 大师 Master 题解  查看运行结果     题目描述 Description 斐波那契数列:f[0]=0,f[1]=1,f[i]=f[i-1]+f[i-2](i>1) 求f[1]*f[1]+f[2]*f[2]+...+f[n]*f[n]的值 输入描述 Input Description 仅一行,一个正整数n 输出描述 Output Description 仅一行一个数,即所求的值,由于结果可能很…
题意1.1: 求\(\sum_{i=1}^n Fib^m\mod 1e9+9\),\(n\in[1, 1e9], m\in[1, 1e4]\) 思路1.1 我们首先需要知道斐波那契数列的通项是:\(Fib_i = \frac{\sqrt5}{5}[(\frac{1+\sqrt5}{2})^i-(\frac{1-\sqrt5}{2})^i]\),因为取模是个质数,我们可以用二次剩余定理得到\(\sqrt5 \mod 1e9+9 = 383008016\),然后就可以得到\(\frac{\sqrt5…
本篇文章解决的问题来源于算法设计与分析课程的课堂作业,主要是运用多种方法来计算斐波那契数.具体问题及解法如下: 一.问题1: 问题描述:利用迭代算法寻找不超过编程环境能够支持的最大整数的斐波那契数是第几个斐波那契数.(Java: 231-1 for int, 263-1 for long) 解决方案:针对问题1,此处要使用迭代法来解决,具体实现代码如下: //用迭代法寻找编程环境支持的最大整数(int型)的斐波那契数是第几个斐波那契数 public static int max_int_iter…
2021.07.26 P1011 车站(斐波那契数列) [P1011 NOIP1998 提高组] 车站 - 洛谷 | 计算机科学教育新生态 (luogu.com.cn) 重点: 1.改变形式的斐波那契数列. 题意: 第一站只上人,第二站上下车人数一样多,第三站到第(n-1)站上车人数是前两站之和,下车人数与前一站上车人数相同. 分析: 设第一站上x1人,第二站上x2人. \[第一站:上:x1:下:0,净上:x1 \\ 第二站:上:x2:下:x2:净上:0 \\ 第三站:上:x1+x2:下:x2:…
M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 1672    Accepted Submission(s): 482 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1] = bF[n] = F[n-1] * F[n-2] ( n > 1 ) 现在给出a,…
M斐波那契数列 Time Limit : 3000/1000ms (Java/Other)   Memory Limit : 65535/32768K (Java/Other) Total Submission(s) : 43   Accepted Submission(s) : 28 Font: Times New Roman | Verdana | Georgia Font Size: ← → Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[…
MF( i ) = a ^ fib( i-1 ) * b ^ fib ( i )   ( i>=3) mod 1000000007 是质数 , 依据费马小定理  a^phi( p ) = 1 ( mod p )  这里 p 为质数 且 a 比 p小 所以 a^( p - 1 ) = 1 ( mod p ) 所以对非常大的指数能够化简  a ^ k % p  == a ^ ( k %(p-1) ) % p 用矩阵高速幂求fib数后代入就可以 M斐波那契数列 Time Limit: 3000/100…
题目链接:https://vjudge.net/problem/HDU-4549 M斐波那契数列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others)Total Submission(s): 4492    Accepted Submission(s): 1397 Problem Description M斐波那契数列F[n]是一种整数数列,它的定义如下: F[0] = aF[1]…