python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 杰卡德距离(Jaccard Distance) 是用来衡量两个集合差异性的一种指标,它是杰卡德相似系数的补集,被定义为1减去Jaccard相似系数.而杰卡德…
杰卡德距离(Jaccard Distance) 是用来衡量两个集合差异性的一种指标,它是杰卡德相似系数的补集,被定义为1减去Jaccard相似系数.而杰卡德相似系数(Jaccard similarity coefficient),也称杰卡德指数(Jaccard Index),是用来衡量两个集合相似度的一种指标. Jaccard相似指数用来度量两个集合之间的相似性,它被定义为两个集合交集的元素个数除以并集的元素个数. Jaccard距离用来度量两个集合之间的差异性,它是Jaccard的相似系数的补…
  1.余弦距离 余弦距离,也称为余弦相似度,是用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小的度量. 向量,是多维空间中有方向的线段,如果两个向量的方向一致,即夹角接近零,那么这两个向量就相近.而要确定两个向量方向是否一致,这就要用到余弦定理计算向量的夹角. 余弦定理描述了三角形中任何一个夹角和三个边的关系.给定三角形的三条边,可以使用余弦定理求出三角形各个角的角度.假定三角形的三条边为a,b和c,对应的三个角为A,B和C,那么角A的余弦为: 如果将三角形的两边b和c看成是两个向…
杰卡德相似系数(Jaccardsimilarity coefficient) (1)杰卡德相似系数 两个集合A和B交集元素的个数在A.B并集中所占的比例,称为这两个集合的杰卡德系数,用符号 J(A,B) 表示.杰卡德相似系数是衡量两个集合相似度的一种指标(余弦距离也可以用来衡量两个集合的相似度). jaccard值越大说明相似度越高. (2)杰卡德距离 与杰卡德相似系数相反的概念是杰卡德距离(Jaccard Distance),可以用如下公式来表示: 杰卡德距离用两个两个集合中不同元素占所有元素…
马氏距离(Mahalanobis distance)是由印度统计学家马哈拉诺比斯(P. C. Mahalanobis)提出的,表示数据的协方差距离.它是一种有效的计算两个未知样本集的相似度的方法.与欧氏距离不同的是它考虑到各种特性之间的联系(例如:一条关于身高的信息会带来一条关于体重的信息,因为两者是有关联的)并且是尺度无关的(scale-invariant),即独立于测量尺度. 对于一个均值为,协方差矩阵为Σ的多变量矢量,其马氏距离为 马氏距离也可以定义为两个服从同一分布并且其协方差矩阵为Σ的…
MATLAB求马氏距离(Mahalanobis distance) 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 1.马氏距离计算公式 d2(xi, xj)=(xi-xj)TS-1(xi-xj) 其中,S是总体的协方差矩阵,而不是样本的协方差矩阵. 2.matlab中现有的函数 >> x=[155 66;180 71;190 73;160 60;190 68;150 58;170 75] x = 155 66 180 71 190 73 160…
[本文链接] http://www.cnblogs.com/hellogiser/p/hamming-distance.html [介绍] 在信息领域,两个长度相等的字符串的海明距离是在相同位置上不同的字符的个数,也就是将一个字符串替换成另一个字符串需要的替换的次数. 例如: xxxxyy和xxxxzz的海明距离是2: 111100 和 111111 的海明距离是2: 对于二进制数字来说,海明距离的结果相当于a^b结果中1的个数. [字符串]  C++ Code  123456789101112…
仔细阅读ORB的代码,发现有很多细节不是很明白,其中就有用暴力方式测试Keypoints的距离,用的是HammingLUT,上网查了才知道,hamming距离是相差位数.这样就好理解了. 我理解的HammingLUT lut; result=lut((a),(b),size_t size):result=a与b的hamming distance+size; unsigned int hamdist(unsigned int x, unsigned int y) { unsigned int di…
[版权声明]:本文章由danvid发布于http://danvid.cnblogs.com/,如需转载或部分使用请注明出处 最近看到一些动态规划的东西讲到莱文斯坦距离(编辑距离)的计算,发现很多都讲的不是很清楚,比较难理解,自己思考过后重新给大家讲解一下: 维基百科解析:莱文斯坦距离,又称Levenshtein距离,是编辑距离的一种.指两个字串之间,由一个转成另一个所需的最少编辑操作次数.允许的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符.例如将kitten转成sittin…
在做分类时常常需要估算不同样本之间的相似性度量(Similarity Measurement),这时通常采用的方法就是计算样本间的“距离”(Distance).采用什么样的方法计算距离是很讲究,甚至关系到分类的正确与否. 本文的目的就是对常用的相似性度量作一个总结. 本文目录: 1. 欧氏距离 2. 曼哈顿距离 3. 切比雪夫距离 4. 闵可夫斯基距离 5. 标准化欧氏距离 6. 马氏距离 7. 巴氏距离(Bhattacharyya Distance) 8. 汉明距离(Hamming dista…