title: [线性代数]7-3:对角化和伪逆(Diagonalization and the Pseudoinverse) categories: Mathematic Linear Algebra keywords: Diagonalization Pseudoinverse toc: true date: 2017-12-06 14:03:08 Abstract: 本文以线性变换的角度重新理解矩阵变换的原理,以对角化和SVD作为主要的案例 Keywords: Diagonalization…
Moore-Penrose伪逆(pseudoinverse). 非方矩阵,逆矩阵没有定义.矩阵A的左逆B求解线性方程Ax=y.两边左乘左逆B,x=By.可能无法设计唯一映射将A映射到B.矩阵A行数大于列数,方程无解.矩阵A行数小于列数,矩阵有多个解. 矩阵A的伪逆A + =lim a->0 (A T A+aI) -1 A T.计算伪逆公式,A + =VD + U T.矩阵U.D.V是矩阵A奇异值分解得到矩阵.对角矩阵D伪逆D + 是非零元素取倒数后再转置.矩阵A列数多于行数,伪逆求解线性方程是可…
对于方阵A,如果为非奇异方阵,则存在逆矩阵inv(A)对于奇异矩阵或者非方阵,并不存在逆矩阵,但可以使用pinv(A)求其伪逆   inv:   inv(A)*B实际上可以写成A\BB*inv(A)实际上可以写成B/A这样比求逆之后带入精度要高 A\B=pinv(A)*B A/B=A*pinv(B)   pinv:   X=pinv(A),X=pinv(A,tol),其中tol为误差 pinv是求广义逆 先搞清楚什么是伪逆.对于方阵A,若有方阵B,使得:A·B=B·A=I,则称B为A的逆矩阵.如…
title: [线性代数]6-2:对角化(Diagonalizing a Matrix) categories: Mathematic Linear Algebra keywords: Eigenvalues Eigenvectors Diagonalizing Fibonacci Numbers AkA^kAk Nondiagonalizable Matrix toc: true date: 2017-11-21 11:48:42 Abstract: 矩阵对角化,以及对角化过程中引入的知识,以…
手动博客搬家: 本文发表于20181212 09:37:21, 原地址https://blog.csdn.net/suncongbo/article/details/84962727 呜啊怎么又是数学了啊...数学比例\(\frac{16}{33}=0.4848\) orz yhx-12243神仙 题目链接: https://codeforces.com/contest/947/problem/E 题意: 有一个\([0,n]\)的随机数\(x\)初始为\(i\)的概率为\(p_i\). \(m…
Abstract: 通过学习MIT 18.06课程,总结出的线性代数的知识点相互依赖关系,后续博客将会按照相应的依赖关系进行介绍.(2017-08-18 16:28:36) Keywords: Linear Algebra,Big Picture 开篇废话 废话不多说,网易公开课有MIT 18.06的课程翻译,MIT OCW提供相关练习,如有需要都可以进行下载. Gilbert Strang教授的讲授能够让大多数人入门,掌握这门课的大部分内容. 本课程教材使用的也是professor Stran…
title: 本站目录 categories: Other sticky: 10 toc: true keywords: 机器学习基础 深度学习基础 人工智能数学知识 机器学习入门 date: 9999-12-31 23:59:59 本站包含作者原创的关于人工智能的理论,算法等博客,目前包括:强化学习,深度学习,机器学习,线性代数,概率论,数理统计,Python,爬虫等在目前人工智能领域需要用到的基础知识,欢迎大家订阅关注. 本站目录 首先插入一下我的整体研究思路,也是人工智能的技能树,我们要顺…
学习DIP第55天 转载请标明本文出处:***http://blog.csdn.net/tonyshengtan ***,出于尊重文章作者的劳动,转载请标明出处!文章代码已托管,欢迎共同开发:https://github.com/Tony-Tan/DIPpro 更多图像处理机器学习内容请访问最新网站www.tony4ai.com #开篇废话 废话开始,今天介绍OTSU算法,本算法比前面给出的算法更能够给出数学上的最佳阈值,不需要任何输入附加参数.与同样不需要输入附加参数的迭代均值和均值阈值来比较…
第二章 线性代数 2.1 名词 标量(scalar).向量(vector).矩阵(matrix).张量(tensor) 2.2 矩阵和向量相乘 1. 正常矩阵乘法: 2. 向量点积: 3. Hadamard乘积(元素对应乘积) 矩阵乘法服从分配律.结合律,两个向量的点积满足交换律,利用两个向量点积的结果是标量(scalar),标量转置是自身. 2.3 单位矩阵和逆矩阵 逆矩阵一般作为理论工具使用,计算机由于精度不足,一般不使用逆矩阵. 2.4 线性相关和生成子空间 线性方程组,解的个数:0.1.…
向量和矩阵 什么是矩阵/向量? Vectors and matrix are just collections of ordered numbers that represent something: movements in space, scaling factors, pixel brightness, etc. We'll define some common uses and standard operations on them. 向量:列向量/行向量 用处: Vectos can…
CS229 斯坦福大学机器学习复习材料(数学基础) - 线性代数 线性代数回顾与参考 1 基本概念和符号 1.1 基本符号 2 矩阵乘法 2.1 向量-向量乘法 2.2 矩阵-向量乘法 2.3 矩阵-矩阵乘法 3 操作及其性质 3.1 单位矩阵和对角矩阵 3.2 转置 3.3 对称矩阵 3.4 矩阵的迹 3.5 范数 3.6 线性相关性和秩 3.7 方阵的逆 3.8 正交矩阵 3.9 矩阵的值域和零空间 3.10 行列式 3.11 二次型和半正定矩阵 3.12 特征值和特征向量 3.13 对称矩…
Python 矩阵(线性代数) 这里有一份新手友好的线性代数笔记,是和深度学习花书配套,还被Ian Goodfellow老师翻了牌. 笔记来自巴黎高等师范学院的博士生Hadrien Jean,是针对"花书"的线性代数一章,初来乍到的小伙伴可以在笔记的辅佐之下,了解深度学习最常用的数学理论,加以轻松的支配. 把理论和代码搭配食用,疗效更好.笔记里列举的各种例子,可以帮初学者用一种更直观实用的方式学好线代.开始前,你需要准备好Numpy和Python. 然后来看一下,要走怎样一个疗程--…
作者:韩信子@ShowMeAI 教程地址:http://www.showmeai.tech/tutorials/83 本文地址:http://www.showmeai.tech/article-detail/162 声明:版权所有,转载请联系平台与作者并注明出处 1.标量(Scalar) 一个标量就是一个单独的数.只具有数值大小,没有方向(部分有正负之分),运算遵循一般的代数法则. 一般用小写的变量名称表示. 质量\(m\).速率\(v\).时间\(t\).电阻\(\rho\) 等物理量,都是数…
导入 import breeze.linalg._ import breeze.numerics._ Spark Mllib底层的向量.矩阵运算使用了Breeze库,Breeze库提供了Vector/Matrix的实现以及相应计算的接口(Linalg).但是在MLlib里面同时也提供了Vector和Linalg等的实现.在使用Breeze库时,需要导入相关包: Import breeze.linalg._ Import breeze.numeric._ Breeze创建函数: 操作名称 Bree…
I. Linear Algebra 1. 基础概念回顾 scalar: 标量 vector: 矢量,an array of numbers. matrix: 矩阵, 2-D array of numbers. tensor: 张量, 更高维的一组数据集合. identity Matricx:单位矩阵 inverse Matrix:逆矩阵,也称非奇异函数.当矩阵A的行列式\(|A|≠0\)时,则存在\(A^{-1}\). 2. Span 3. Norm \(L^p\) norm 定义如右: \(|…
非方阵的矩阵的逆矩阵  pseudoInverse 伪逆矩阵是逆矩阵的广义形式,广义逆矩阵 matlab中是pinv(A)-->inv(A). #include "stdafx.h" #include<iostream> #include<Eigen/Core> #include<Eigen/SVD> template<typename _Matrix_Type_> _Matrix_Type_ pseudoInverse(const…
在 YouTube 上找到了慕尼黑工业大学(Technische Universitaet München)计算机视觉组 Daniel Cremers 教授的 Multiple View Geometry 课程.容易理解,收获颇多,写下笔记以巩固所学. 课程的 YouTube 地址为:https://www.youtube.com/playlist?list=PLTBdjV_4f-EJn6udZ34tht9EVIW7lbeo4 .视频评论区可以找到课程所使用课件与练习题的下载地址. 课程第1章介…
目录 一.引言 1.什么是.为什么需要深度学习 2.简单的机器学习算法对数据表示的依赖 3.深度学习的历史趋势 最早的人工神经网络:旨在模拟生物学习的计算模型 神经网络第二次浪潮:联结主义connectionism 神经网络的突破 二.线性代数 1. 标量.向量.矩阵和张量的一般表示方法 2. 矩阵和向量的特殊运算 3. 线性相关和生成子空间 I. 方程的解问题 II. 思路 III. 结论 IV.求解方式 4. 范数norm I. 定义和要求 II. 常用的\(L^2\)范数和平方\(L^2\…
NoteBook of <Data Analysis with Python> 3.IPython基础 Tab自动补齐 变量名 变量方法 路径 解释 ?解释, ??显示函数源码 ?搜索命名空间 %run命令 %run 执行所有文件 %run -i 访问变量 Ctrl-C中断执行 %paste可以粘贴剪切板的一切文本 一般使用%cpaste因为可以改 键盘快捷键 魔术命令 %timeit 检测任意语句的执行时间 %magic显示魔术命令的详细文档 %xdel v 删除变量,并清除其一切引用 注册…
前面我们讲了 QR 分解有一些优良的特性,但是 QR 分解仅仅是对矩阵的行进行操作(左乘一个酉矩阵),可以得到列空间.这一小节的 SVD 分解则是将行与列同等看待,既左乘酉矩阵,又右乘酉矩阵,可以得出更有意思的信息.奇异值分解( SVD, Singular Value Decomposition ) 在计算矩阵的伪逆( pseudoinverse ),最小二乘法最优解,矩阵近似,确定矩阵的列向量空间,秩以及线性系统的解集空间都有应用. 1. SVD 的形式 对于一个任意的 m×n 的矩阵 A,S…
1. QR 分解的形式 QR 分解是把矩阵分解成一个正交矩阵与一个上三角矩阵的积.QR 分解经常用来解线性最小二乘法问题.QR 分解也是特定特征值算法即QR算法的基础.用图可以将分解形象地表示成: 其中, Q 是一个标准正交方阵, R 是上三角矩阵. 2. QR 分解的求解 QR 分解的实际计算有很多方法,例如 Givens 旋转.Householder 变换,以及 Gram-Schmidt 正交化等等.每一种方法都有其优点和不足.上一篇博客介绍了 Givens 旋转和 Householder…
PS:主要是讲解矩阵的相应的实现方法,其实MATLAB的很大一部分的优势,就是集成了矩阵级别的运算,并以此为特点,可以进行多维空间上的验证. 让我们懂得了原来线性代数如此有用= - =. (一)MATLAB矩阵 一.矩阵的建立 1.直接输入法创建: 还可以有复数矩阵的建立,有两种方法: (1)直接按照直接输入法来建立矩阵,但是元素可以直接打成复数的形式(a+bj) (2)还有就是分别建立一个实部还有一个虚部的矩阵,然后通过(a+bj)就可以得到. 2.M文件建立矩阵 就是把建立的矩阵存在一个文件…
Machine Learning – Coursera Octave for Microsoft Windows GNU Octave官网 GNU Octave帮助文档 (有900页的pdf版本) Octave 4.0.0 安装 win7(文库) Octave学习笔记(文库) octave入门(文库) WIN7 64位系统安装JDK并配置环境变量(总是显示没有安装Java) MathWorks This week we're covering linear regression with mul…
原文链接:JAMA:Java矩阵包 API文档链接:线性代数Java包 JAMA jama是一个非常好用的java的线性代数软件包.适用于日常编程可能碰到的各种矩阵运算问题,提供了一个优雅的简便的解决方案. jama:java 矩阵包 背景 jama是一个基本的线性代数java包,它提供了实数非稀疏矩阵类,程序员可构造操控这些类.对于经常使用到矩阵运算的码农来说,即使不精通线性代数也没有关系,因为jama包提供的功能已经够用,调用方便,使用自然,而且易于理解.Jama包意欲称为java的标准矩阵…
Capel, David, and Andrew Zisserman. "Computer vision applied to super resolution." Signal Processing Magazine, IEEE 20, no. 3 (2003): 75-86. 简介 超分辨率重建的目的是使用一组低分辨率的图像来估计一副高分辨率图像.重建主要通过两个步骤来完成:配准低分辨率的图片组到一个公共的坐标系,然后使用图像的生成模型(generative image model…
转载自: http://blog.csdn.net/dengjianqiang2011/article/details/8753807 MATLAB矩阵操作大全 一.矩阵的表示在MATLAB中创建矩阵有以下规则:a.矩阵元素必须在"[ ]"内:b.矩阵的同行元素之间用空格(或",")隔开:c.矩阵的行与行之间用";"(或回车符)隔开:d.矩阵的元素可以是数值.变量.表达式或函数:e.矩阵的尺寸不必预先定义. 二,矩阵的创建:1.直接输入法最简单的…
一.常用链接: 1.Python官网:https://www.python.org/ 2.各种库的whl离线安装包:http://www.lfd.uci.edu/~gohlke/pythonlibs/#scikit-learn 3.数据分析常用库的离线安装包(pip+wheels)(百度云):http://pan.baidu.com/s/1dEMXbfN 密码:bbs2 二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和…
numpy 与 pandas 都是用来对数据进行处理的模块, 前者以array 为主体,后者以 DataFrame 为主体(让我想起了Spark的DataFrame 或RDD) 有说 pandas 是 numpy 的升级版, 实际两者相辅相成,是科学数据计算处理中的两大利器 numpy 扩展知识 numpy 常用函数 #创建各种各样的数据 import numpy as np # 定义单个列表,这时候是没有维度的 lst = np.array((1,2,3),dtype=np.int32) #(…
二.常用库 1.NumPy NumPy是高性能科学计算和数据分析的基础包.部分功能如下: ndarray, 具有矢量算术运算和复杂广播能力的快速且节省空间的多维数组. 用于对整组数据进行快速运算的标准数学函数(无需编写循环). 用于读写磁盘数据的工具以及用于操作内存映射文件的工具. 线性代数.随机数生成以及傅里叶变换功能. 用于集成C.C++.Fortran等语言编写的代码的工具. 首先要导入numpy库:import numpy as np A NumPy函数和属性: 类型 类型代码 说明 i…