【算法学习笔记】RMQ问题与ST表】的更多相关文章

最近,在某社团的要求下,自学了PID算法.学完后,深切地感受到PID算法之强大.PID算法应用广泛,比如加热器.平衡车.无人机等等,是自动控制理论中比较容易理解但十分重要的算法. 下面是博主学习过程中所做的笔记,笔记后面提供了4种编程语言的仿真代码(C, C++, Python, Matlab),使实现方式更加灵活,同时增强对PID的理解.(文章较长,可点击右侧目录选择性阅读) PID算法学习笔记 参考:PID基础入门教程 一.位式控制算法 1.1 位式控制算法原理 位式控制算法,通过比较SV(…
原始地址:C / C++算法学习笔记(8)-SHELL排序 基本思想 先取一个小于n的整数d1作为第一个增量(gap),把文件的全部记录分成d1个组.所有距离为dl的倍数的记录放在同一个组中.先在各组内进行直接插入排序:然后,取第二个增量d2<d1重复上述的分组和排序,直至所取的增量dt=1(dt<dt-l<:…<d2<d1),即所有记录放在同一组中进行直接插入排序为止. 该方法实质上是一种分组插入方法. 算法编码 void shellSort(int v[], int n)…
Manacher算法学习笔记 DECLARATION 引用来源:https://www.cnblogs.com/grandyang/p/4475985.html CONTENT 用途:寻找一个字符串的最长回文子串 时间复杂度:O(N) 算法步骤: 1.添加特殊字符 由于回文串的长度可奇可偶,比如"bob"是奇数形式的回文,"noon"就是偶数形式的回文,马拉车算法的第一步是预处理,做法是在每一个字符的左右都加上一个特殊字符,比如加上'#',那么 bob -->…
\(Johnson\)算法学习笔记. 在最短路的学习中,我们曾学习了三种最短路的算法,\(Bellman-Ford\)算法及其队列优化\(SPFA\)算法,\(Dijkstra\)算法.这些算法可以快速的求出单源最短路,即一个源点的最短路. 而\(Floyd\)算法,这个及其简短的算法,可以以\(O(n^3)\)的复杂度算出任意一对点之间的最短路. 我们发现,\(floyd\)算法的时间复杂度和边的数量没有多大的关系,也就是说,\(floyd\)使用的最优条件是稠密图. 那么问题来了,如果我们面…
Johnson 全源最短路径算法学习笔记 如果你希望得到带互动的极简文字体验,请点这里 我们来学习johnson Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些边权重为负数,但可能不存在负权重循环.它的工作原理是使用Bellman-Ford 算法来计算输入图的转换,该转换去除了所有负权重,从而允许在转换后的图上使用Dijkstra 算法.Johnson 算法是一种在边加权有向图中找到所有顶点对之间最短路径的方法.它允许一些边权重为负数,但可能不存在负权重循…
\(0.\) RMQ问题 P1816 人话翻译 给定一个长度为\(n\)的数列\(a\),然后有\(m\)组询问,每次询问一个区间\([l,r]\)的最小值. 其中\(m,n\leq10^5\) \(1.\) 暴力做法 很显然,暴力做法就是便历 \(\max\limits_{l\leq i\leq r}a_i\) .这个做法最坏时间复杂度将会高达\(O(n^2)\).很显然,这对于\(1e5\)的数据范围要炸 \(2.\) 正解 线段树 如果不知道什么是线段树,请点击这里 线段树 对于这种区间信…
$RMQ$问题:给定一个长度为$N$的区间,$M$个询问,每次询问$[L_i,R_i]$这段区间元素的最大值/最小值. $RMQ$的高级写法一般有两种,即为线段树和$ST$表. 本文主要讲解一下$ST$表的写法.(以区间最大值为例) $ST$表:一种利用$dp$思想求解区间最值的倍增算法. 定义:$f(i,j)$表示$[i,i+2^{j}-1]$这段长度为$2^{j}$的区间中的最大值. 预处理:$f(i,0)=a_i$.即$[i,i]$区间的最大值就是$a_i$. 状态转移:将$[i,j]$平…
RMQ(Range Minimum/Maximum Query)问题指的是一类对于给定序列,要求支持查询某区间内的最大.最小值的问题.很显然,如果暴力预处理的话复杂度为 \(O(n^2)\),而此类问题数据又往往很大,不仅会爆时间,数组也存不下.我们需要一种能够 \(O(n\log n)\) 甚至 \(O(n)\) 预处理的数据结构,这便是ST表. ST表(Sparse Table,应译为S表)是一种可以以 \(O(n\log n)\) 的优秀复杂度预处理出静态区间上的最大.最小值的算法,其核心…
当我们处理树上点与点关系的问题时(例如,最简单的,树上两点的距离),常常需要获知树上两点的最近公共祖先(Lowest Common Ancestor,LCA).如下图所示: 2号点是7号点和9号点的最近公共祖先 我们先来讨论朴素的做法. 首先进行一趟dfs,求出每个点的深度: int dep[MAXN]; bool vis[MAXN]; void dfs(int cur, int fath = 0) { if (vis[cur]) return; vis[cur] = true; dep[cur…
题目链接 \(Description\) 给定一棵树.每次询问给定\(a\sim b,c\sim d\)两个下标区间,从这两个区间中各取一个点,使得这两个点距离最远.输出最远距离. \(n,q\leq10^5\). \(Solution\) 一个集合直径的两端点,在被划分为两个集合后一定是两个集合直径的四个端点中的两个. 即假设将\(S\)分为两个集合后,另外两个集合的直径的两端点分别为a,b和c,d,那么\(S\)集合的直径的两端点一定是a,b,c,d中的两个. 证明类似树的直径. 所以信息可…