【51nod】1602 矩阵方程的解】的更多相关文章

[51nod]1602 矩阵方程的解 这个行向量显然就是莫比乌斯函数啦,好蠢的隐藏方法= = 然后我们尝试二分,二分的话要求一个这个东西 \(H(n) = \sum_{i = 1}^{n} \mu(i) == d\) 当然\(\mu(x)\)由于一些很好的性质,这个东西可以用分类讨论做出来 众所周知,求\(\mu\)不为0的数的方法就是容斥求无平方因子数 \(G(n) = \sum_{i = 1}^{\sqrt{N}} \mu(i) \lfloor \frac{N}{i^{2}} \rfloor…
这一周的作业,刚压线写完.Problem3 没有写,不想证明了.从Problem 9 开始一直到最后难度都挺大的,我是在论坛上看过了别人的讨论才写出来的,挣扎了很久. Problem 9在给定的基上分解向量,里面调用了hw4的一些函数,通过solve函数获得矩阵方程的解 Problem 10判断矩阵是不是可逆的,注意判断矩阵是不是square的 Problem 11和Problem 12 都是求逆,也是解方程,只是函数的参数需要参考一下源码 发现一个有趣的事情,Coding the Matrix…
MATLAB函数 solve, vpasolve, fsolve, fzero, roots 功能和信息概览 求解函数 多项式型 非多项式型 一维 高维 符号 数值 算法 solve 支持,得到全部符号解 若可符号解则得到根 支持 支持 支持 当无符号解时 符号解方法:利用等式性质得到标准可解函数的方法 基本即模拟人工运算 vpasolve 支持,得到全部数值解 (随机初值)得到一个实根 支持 支持 $\times$ 支持 未知 fsolve 由初值得到一个实根 由初值得到一个实根 支持 支持…
这学期有一门运筹学,讲的两大块儿:线性优化和非线性优化问题.在非线性优化问题这里涉及到拉格朗日乘子法,经常要算一些非常变态的线性方程,于是我就想用python求解线性方程.查阅资料的过程中找到了一个极其简单的解决方式,也学到了不少东西.先把代码给出. import numpy as np # A = np.mat('1 2 3;2 -1 1;3 0 -1') A = np.array([[1, 2, 3], [2, -1, 1], [3, 0, -1]]) b = np.array([9, 8,…
题意:给出N,A,B:求A*x+ B*y = N+1   的大于0 的解的数量: 思路:先用exgcd求出大于0的初始解x,rest = N - x*A; sum = rest/LCM(A, B); #include <iostream> #include <algorithm> #include <stdlib.h> #include <time.h> #include <cmath> #include <cstdio> #incl…
Fence Repair Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 53106   Accepted: 17508 Description Farmer John wants to repair a small length of the fence around the pasture. He measures the fence and finds that he needs N (1 ≤ N ≤ 20,000)…
今天现场查看了TCP端口的占用情况,如下图   红色部分是IP,现场那边问我是不是我的程序占用了tcp的链接,,我远程登陆现场查看了一下,这种类型的tcp链接占用了400多个,,后边查了一下资料,说ESTABLISHED状态 ESTABLISHED的意思是建立连接.表示两台机器正在通信.      之后查找  ncube-lm  发现ncube-lm是一个端口,是nCube License Manager (即ncube管理的一个许可证明),意思是被允许,被认证开放的意思,,, 之后查看端口号…
题目链接:51nod 1158 全是1的最大子矩阵 题目分类是单调栈,我这里直接用与解最大子矩阵类似的办法水过了... #include<cstdio> #include<cstring> #include<cmath> #include<algorithm> #define CLR(a,b) memset((a),(b),sizeof((a))) using namespace std; ; const int inf = 0x3f3f3f3f; int…
向量: 向量的基本运算:向量的运算最基本的一件事情,就是基于它n个分量上进行,即对于两个分量的向量a = <a1,a2>,b = <b1,b2>,有a + b = <a1+b1,a2+b2>.聪明的读者可能已经想到了,这其实是与我们在高中物理的力学中所谓的“正交分解”是相互呼应的,而其实也是基于此,我们能够得到我们熟悉的所谓“平行四边形法则”.“三角形法则”. 更全面的向量的代数性质,下表给出. 向量方程: 我们进行进一步的转化. 可以看到,解向量方程的过程本质上回到了…
高斯消元法,是线性代数中的一个算法,可用来求解线性方程组,并可以求出矩阵的秩,以及求出可逆方阵的逆矩阵.高斯消元法的原理是:若用初等行变换将增广矩阵 化为 ,则AX = B与CX = D是同解方程组. 所以我们可以用初等行变换把增广矩阵转换为行阶梯阵,然后回代求出方程的解. 1.线性方程组 1)构造增广矩阵,即系数矩阵A增加上常数向量b(A|b) 2)通过以交换行.某行乘以非负常数和两行相加这三种初等变化将原系统转化为更简单的三角形式(triangular form) 注:这里的初等变化可以通过…