I. 范数(Norm) 定义: 向量空间\(V\)上的范数(norm)是如下函数: \[ \begin{align} \|·\|:V→R, \notag \\ x→\|x\| \notag \end{align} \] 该函数会赋予每个向量\(x\)自身的长度\(\|x\|∈R\),并且对于\(\lambda∈R,\,\,x,y∈V\)满足如下性质: Absolutely homogeneous:\(\|\lambda x\|=|\lambda|\|x\|\) Triangle inequali…
[Math for ML]矩阵分解(Matrix Decompositions) (上) I. 奇异值分解(Singular Value Decomposition) 1. 定义 Singular Value Decomposition (SVD)是线性代数中十分重要的矩阵分解方法,被称为"线性代数的基本理论",因为它不仅可以运用于所有矩阵(不像特征值分解只能用于方阵),而且奇异值总是存在的. SVD定理 设一个矩阵\(A^{m×n}\)的秩为\(r∈[0,min(m,n)]\),矩阵…
I. 向量梯度 假设有一个映射函数为\(f:R^n→R^m\)和一个向量\(x=[x_1,...,x_n]^T∈R^n\),那么对应的函数值的向量为\(f(x)=[f_1(x),...,f_m(x)]^T∈R^m\). 现在考虑\(f\)对\(x_i\)的梯度为:\(\frac{\partial{f}}{\partial{x_i}}=[\frac{\partial{f_1}}{\partial{x_i}},...,\frac{\partial{f_m}}{\partial{x_i}}]^T∈R^…
I. 行列式(Determinants)和迹(Trace) 1. 行列式(Determinants) 为避免和绝对值符号混淆,本文一般使用\(det(A)\)来表示矩阵\(A\)的行列式.另外这里的\(A∈R^{n×n}\)默认是方阵,因为只有方阵才能计算行列式. 行列式如何计算的就不在这里赘述了,下面简要给出行列式的各种性质和定理. 定理1:当且仅当一个方阵的行列式不为0,则该方阵可逆. 定理2:方阵\(A\)的行列式可沿着某一行或某一列的元素展开,形式如下: 沿着第\(i\)行展开:\[de…
I. 映射(Mapping) 1. 单射(Injective) 函数f 是单射当且仅当若f(x) = f(y) 则 x = y. 例子: f(x) = x+5 从实数集\(R\)到\(R\)是个单射函数. 这个函数很容易被还原:f(3) = 8,即 已知 8 可以返回 3 2. 满射(Surjective) 函数 f(从集 A 到集 B)是满射当且仅当在 B 中的每个 y 存在至少一个在 A 中的 x 满足 f(x) = y, 就是说, f 是满射当且仅当 f(A) = B. 值域里的每个元素都…
I. Groups 在介绍向量空间之前有必要介绍一下什么Group,其定义如下: 注意定义中的\(\bigotimes\)不是乘法,而是一种运算符号的统一标识,可以是乘法也可以是加法等. 此外,如果\(\forall{x,y}∈\mathcal{G}:x⊗y=y⊗x\),那么此时\(G=(\mathcal{G,⊗})\)是Abelian Group(阿尔贝群). 举个栗子: \((Z,+)\)是group \((N_0,+)\)不是group,因为他没有inverse elements,即不满足…
Chapter 1 Vector Algebra ♦ Vector Space Vector and vector space A vector is described as a quantity that has both direction and length.  A vector space is a collection of these geometic objects that can be added together and multiplied by numbers. Wh…
https://www.quora.com/How-do-I-learn-machine-learning-1?redirected_qid=6578644   How Can I Learn X? Learning Machine Learning Learning About Computer Science Educational Resources Advice Artificial Intelligence How-to Question Learning New Things Lea…
1.老老实实把课本上的题目做完.其实说科大的课本难,我以为这话不完整.科大的教材,就数学系而言还是讲得挺清楚的,难的是后面的习题.事实上做1道难题的收获是做10道简单题所不能比的. 2.每门数学必修课至少要看一本参考书,尽量做一本习题集. 3.数学分析别做吉米,除非你太无聊,推荐北大方企勤的习题集.此外注意一下有套波兰的数学分析习题集,是不是搞得到中文或英文版. 4.线性代数推荐普罗斯库列科夫的<<线性代数习题集>>和法捷耶夫的<<高等代数习题集>>.莫斯科…
总结: 1.线性变换运算封闭,加法和乘法 2.特征向量经过线性变换后方向不变 https://en.wikipedia.org/wiki/Linear_map Examples of linear transformation matrices In two-dimensional space R2 linear maps are described by 2 × 2 real matrices. These are some examples: rotation by 90 degrees c…