【LOJ】#6437. 「PKUSC2018」PKUSC】的更多相关文章

题解 我们把这个多边形三角形剖分了,和统计多边形面积一样 每个三角形有个点是原点,把原点所对应的角度算出来,记为theta 对于一个点,相当于半径为这个点到原点的一个圆,圆弧上的弧度为theta的一部分 相当于一条直线和这个小圆弧求交,直接算出有交的角度然后累加最后除2PI即可 可以拿余弦定理爆算(反着也不是你自己算 代码 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,in…
题解 什么,我这题竟然快到了LOJ rk1???? 搜起来有点麻烦,不过感觉还是比斗地主好下手(至今没敢写斗地主 首先是暴力搜牌型,最多\(3^{16}\)(什么判解还要复杂度怂成一团)的样子?? 然后判牌型,显然只要考虑单牌,和3 + x,4+2 然后暴力搜网友的3和4 暴力搜jry的3和4 然后枚举3搭配了几个2, 然后jry从大到小开始去除大小为2的对子,网友从小到大,是个简单的贪心 之后看看可以去掉的单牌的个数,也是jry从大到小,网友从小到大 之后的就是单牌互相压看看合不合法就好了 代…
题解 感觉智商为0啊QAQ 显然对于一个长度为\(len\)的border,每个点同余\(n - len\)的部分必然相等 那么我们求一个\(f[a]\)数组,如果存在\(s[x] = 0\)且\(s[y] = 1\)且\(|x - y| = a\) 这个很好求,只要把0和1分别挑出来,NTT卷一下就好了 一个\(len\)合法,即它的\(n - len\)的倍数\(k\),\(f[k]\)都等于0 代码 #include <bits/stdc++.h> #define fi first #d…
题解 想出70的大众分之后就弃疗了,正解有点神仙 就是首先有个比较显然的结论,就是要么是一直往左走,要么是走一步右边,然后一直往左走 根据这个可以结合RMQ写个70分的暴力 我们就考虑,最优的话显然是走一步左边就到了目标点,第二步才开始有分叉 假如我们先走了一步左边,然后就变成了,从\(L[x]\)开始走,下一步可以走到\([L[x],N]\)的所有点最小的转移点之前,之后再把后来走的点代价都加上1即可 这样的话,不管是一直走左边,还是走了一步右边再走了左边,情况都被包含了 这个时候考虑这个问题…
题解 神仙的状压啊QAQ 设一个\(f[S]\)表示数字的集合为\(S\)时\(sum[S]\)为前缀最大值的方案数 \(g[S]\)表示数字集合为\(S\)时所有前缀和都小于等于0的方案数 答案就是\(sum_{S} sum[S] * f[S] * g[2^{N} - 1 - S]\) 求\(f\)每次相当于往前面插入一个数,如果\(sum[S] > 0\)就更新 \(f[S \^ (1 << i - 1)] += f[S] (sum[S] > 0)\) 求\(g\)只要每次看看…
题解 简单分析一下,如果这个选手成绩是0,直接输出\(\binom{n}{k}\) 如果这个选手的成绩没有被翻倍,那么找到大于等于它的数(除了它自己)有a个,翻倍后不大于它的数有b个,那么就从这\(a + b\)个选手里找翻倍选手使得它排名不变 答案是\(\binom{a + b}{K}\) 如果这个选手成绩翻倍了,那么大于等于它的所有数,依旧大于它的有\(c\)个,然后剩余\(a - c\)个必须翻倍,剩下的翻不翻倍随意,所以答案是 \(\binom{N - (a - c) - 1}{K -…
LOJ#2210. 「HNOI2014」江南乐 感觉是要推sg函数 发现\(\lfloor \frac{N}{i}\rfloor\)只有\(O(\sqrt{N})\)种取值 考虑把这些取值都拿出来,能取到这个值的\(i\)是一个区间\([l,r]\) 如果\(r - l + 1 = 1\),那么直接算这个数的答案即可(\(\lfloor \frac{N}{i}\rfloor\)的石子有奇数堆还是偶数堆,\(\lfloor \frac{N}{i}\rfloor + 1\)的石子有奇数堆还是偶数堆,…
LOJ#3098. 「SNOI2019」纸牌 显然选三个以上的连续牌可以把他们拆分成三个三张相等的 于是可以压\((j,k)\)为有\(j\)个连续两个的,有\(k\)个连续一个的 如果当前有\(i\)张牌,且\(i >= j + k\) 那么可以\((j,k)\rightarrow (k,(i - j - k) \% 3)\) 可以用矩阵乘法优化,每遇到一个有下限的牌面的就再特殊造一个矩阵转移 #include <bits/stdc++.h> #define fi first #def…
LOJ#3103. 「JSOI2019」节日庆典 能当最小位置的值一定是一个最小后缀,而有用的最小后缀不超过\(\log n\)个 为什么不超过\(\log n\)个,看了一下zsy的博客.. 假如\(i = AAB\),\(j = AB\),\(B\)是\(A\)的一个严格前缀,\(|j| < |i| < 2|j|\) 但是有\(k = B\),导致了若\(j\)比\(i\)优,则\(k\)会比\(j\)优,\(j\)比\(k\)优,则\(i\)会比\(j\)优,那么\(j\)就没用了 然后…
LOJ#3102. 「JSOI2019」神经网络 首先我们容易发现就是把树拆成若干条链,然后要求这些链排在一个环上,同一棵树的链不相邻 把树拆成链可以用一个简单(但是需要复杂的分类讨论)的树背包实现 \(dp[u][j][0/1/2]\)表示第\(u\)个点已经选了\(j\)条链,0是两个不同子树的链拼到一起,1是只有1个点,2是有一条至少有两个点的链 通过这个我们可以求一个\(f[k]\)表示把这棵树分成\(k\)条链有几种情况 环排列可以通过全排列除以排列长度得到 我们设把\(k\)条链分成…
LOJ#3101. 「JSOI2019」精准预测 设0是生,1是死,按2-sat连边那么第一种情况是\((t,x,1) \rightarrow (t + 1,y,1)\),\((t + 1,y, 0) \rightarrow (t,x,0)\) 第二种情况是\((t,x,0) \rightarrow (t,y,1)\),\((t,y,0) \rightarrow(t,x,1)\) 然后\((t,x,0)\)往\((t - 1,x,0)\)连边,\((t,x,1)\)往\((t + 1,x,1)\…
LOJ#3097. 「SNOI2019」通信 费用流,有点玄妙 显然按照最小路径覆盖那题的建图思路,把一个点拆成两种点,一种是从这个点出去,标成\(x_{i}\),一种是输入到这个点,使得两条路径合成一条(或者是新建一条),标成\(y_i\) 源点向每个\(x_i\)流一条容量为1,费用为0的边 然后向每个\(y_{i}\)流一条容量为1,费用为W的边 每个\(y_i\)向汇点连一条容量为1,费用为0的边 这个时候,如果你充满梦想,你可以把所有的\(x_{i}\)到\(y_j\)(\(i < j…
LOJ#3096. 「SNOI2019」数论 如果\(P > Q\)我们把\(P\)和\(Q\)换一下,现在默认\(P < Q\) 这个时候每个合法的\(a_i\)都可以直接落到\(Q\)中,因为\(a_{i} \equiv a_{i} \pmod Q\)这样避免了麻烦 然后呢我们发现每次把\((a_{i} + P) \% Q\)会走成一个圈,我们就要求从\(a_{i}\)开始数\(\lfloor \frac{T - 1- a_{i}}{P} \rfloor + 1\)个圈里\(b_{i}\)…
LOJ#2239. 「CQOI2014」危桥 就是先把每条边正着连一条容量为2的边,反着连一条容量为2的边 显然如果只有一个人走的话,答案就是一个源点往起点连一条容量为次数×2的边,终点往汇点连一个次数×2的边,跑最大流看是否满流即可 两个人的话由于两个人的路径可能相交,有可能从\(a_1\)走到了\(b_2\) 统计一遍 \(a_1,b_{1}\)为源点,\(a_{2},b_{2}\)为汇点的情况 再统计一遍\(a_{1},b_{2}\)为源点,\(a_{2},b_{1}\)为汇点的情况 这两…
LOJ#3109. 「TJOI2019」甲苯先生的线段树 发现如果枚举路径两边的长度的话,如果根节点的值是$x$,左边走了$l$,右边走了$r$ 肯定答案会是$(2^{l + 1} + 2^{r + 1} - 3)x + t$,可以发现$t < (2^{l + 1} + 2^{r + 1} - 3)$,于是考虑计算对于$t$,左边走了$l$,右边走了深度$r$,几种走法使得总和为$t$ 容易发现右边最小一定是走了$2^ - 1$于是可以扣掉 再发现我们其实是对于左边和右边串选择长度为$[1,l…
LOJ#3095. 「SNOI2019」字符串 如果两个串\(i,j\)比较\(i < j\),如果离\(a_{i}\)最近的不同的数是\(a_{k}\),如果\(j < k\)那么\(i\)排在\(j\)前面 否则的话如果\(a_{k} < a_{i}\),那么\(i\)排在\(j\)前 于是写个比较函数扔到sort里就可以了 #include <bits/stdc++.h> #define fi first #define se second #define pii pa…
LOJ#3094. 「BJOI2019」删数 之前做atcoder做到过这个结论结果我忘了... em,就是\([1,n]\)之间每个数\(i\),然后\([i - cnt[i] + 1,i]\)可以放一条线段,没被线段放的地方就是需要改的数的总和 之后我们线段树维护区间最小值以及个数 我们要注意如果+1后使得一个本来在\([1,N]\)的点越出了范围,那么就要把这个区间给删掉,-1同理,要加进来 值域开成\(N + 2M\)也就是\(4.5*10^{5}\)即可 #include <bits/…
LOJ#3093. 「BJOI2019」光线 从下到上把两面镜子合成一个 新的镜子是\((\frac{a_{i}a_{i + 1}}{1 - b_{i}b_{i + 1}},b_{i} + \frac{a_{i}^{2}b_{i}}{1 - b_{i}b_{i + 1}})\) #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_p…
LOJ#3092. 「BJOI2019」排兵布阵 这题就是个背包啊,感觉是\(nms\)的但是不到0.2s,发生了什么.. 就是设\(f[i]\)为选了\(i\)个人最大的代价,然后有用的人数只有\(s\)种 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define sp…
LOJ#3090. 「BJOI2019」勘破神机 为了这题我去学习了一下BM算法.. 很容易发现这2的地方是\(F_{1} = 1,F_{2} = 2\)的斐波那契数列 3的地方是\(G_{1} = 3,G_{2} = 11\)其中下标表示长度的\(\frac{1}{2}\),可以得到\(G_{3} = 4G_{2} - G_{1}\) 然后我们列一波特征根方程,可以得到 \(m = 2\)时 $$ \left{\begin{matrix} x_{1} = \frac{1 + \sqrt{5}}…
LOJ#3089. 「BJOI2019」奥术神杖 看见乘积就取log,开根号就是除法,很容易发现这就是一道01分数规划.. 然后建出AC自动机直接dp就行,判断条件要设成>0,因为起点的值是1,取完ln后是0 #include <bits/stdc++.h> #define fi first #define se second #define pii pair<int,int> #define mp make_pair #define pb push_back #define…
LOJ#3046. 「ZJOI2019」语言 先orz zsy吧 有一个\(n\log^3n\)的做法是把树链剖分后,形成logn个区间,这些区间两两搭配可以获得一个矩形,求矩形面积并 然后就是对于一个点把树链的log个区间加进去然后线段树合并,这是\(n \log^2 n\)的 链并会形成一棵树,如果我们把经过某个点的链的端点按dfn序排序的话,相邻两项算一下距离,首尾两项再算一下,我们就可以获得链并的这棵树的边权和×2,由此可以求树上的点的个数 我们要求的就是经过每个点的链并-1的和,然后再…
LOJ#3044. 「ZJOI2019」Minimax 搜索 一个菜鸡的50pts暴力 设\(dp[u][j]\)表示\(u\)用\(j\)次操作能使得\(u\)的大小改变的方案数 设每个点的初始答案是\(S[u]\) 每个数大小只和\(S[1]\)的大小关系有关 于是每个数的状态设为-1(比S[1]小),1(比S[1]大),0(和S[1]一样) 状态里设的改变是指在这三种状态里的一种变为另一种 如果\(S[u] == S[1]\)或者\(u\)点取max但是\(S[u] < S[1]\),\(…
LOJ#3042. 「ZJOI2019」麻将 如何判定一个集合牌有没有胡的子集是不是胡的 就用一个\(dp[j][k][0/1]\)表示有j个连续两个的串,有k个连续1个串,有没有对子,再记一下这个集合里的牌大于等于2的花色数有几个 我们把\(dp[j][k][0/1]\)和大于等于2的花色数作为一副牌的状态,然后给每个状态标号,做一个dp \(f[i][j][S]\)表示考虑到第\(i\)种花色,有\(j\)张牌,状态标号是\(S\)的方案数,记录到第\(j\)张牌还没赢的方案数是\(S(j)…
LOJ#3043. 「ZJOI2019」线段树 计数转期望的一道好题-- 每个点设两个变量\(p,q\)表示这个点有\(p\)的概率有标记,有\(q\)的概率到祖先的路径上有个标记 被覆盖的点$0.5p + 0.5 \rightarrow p ,0.5q + 0.5\rightarrow q $ 被覆盖的点子树中的点\(p\rightarrow p,0.5q + 0.5 \rightarrow q\) 经过的点\(0.5p \rightarrow p,0.5q \rightarrow q\) 未…
LOJ#2985. 「WC2019」I 君的商店 一道很神仙的题啊QAQ 居然是智商题--不是乱搞或者是大数据 我们可以用2N问出一个最大值是1 然后对于任意两个值\(x + y\)和\(a\)比较 如果\(x + y \leq a\),那么其中的最小值是\(0\) 如果\(x + y \geq a\)那么其中的最大值是1 我们比较\(x\)和\(y\)的大小,总可以得到一个数的确定值 这是\(7N\)的 而如果我们直接选三个数\(x,y,a\) 用2的代价使得\(x \geq y\) 如果$x…
题解 点一个技能点叫特征方程 就是 \(a_{n + 2} = c_1 a_{n + 1} + c_2 a_{n}\) \(x^2 = c_1 x + c_2\) 解出两根来是\(x_1,x_2\) 通项就是 \(Ax_1^{n} + Bx_2^{n}\)把第一项和第二项带入可以解出来A和B 然后为了得到通项是 \((\frac{b + \sqrt{d}}{2})^n + (\frac{b - \sqrt{d}}{2})^{n}\)的数列 那么我们让 \(c_1 = b\) \(c_2 = \f…
#3020. 「CQOI2017」小 Q 的表格 这个的话求出来\(g = gcd(a,b)\) 会修改所有gcd为g的位置 我们要求\((g,g)\)这个位置的数一定是\(g^{2}\)的倍数 之后的\(gcd(a,b) == g\)的位置也会满足 $\frac{f(g,g)}{g^{2}} = \frac{f(a,b)}{ab} $ 注意\(\frac{f(g,g)}{g^{2}}\),\(\frac{f(a,b)}{ab}\)都不一定是整数,但是\(f(g,g)\)和\(f(a,b)\)是…
LOJ2983. 「WC2019」数树 task0 有\(i\)条边一样答案就是\(y^{n - i}\) task1 这里有个避免容斥的方法,如果有\(i\)条边重复我们要算的是\(y^{n - i}\),设\(a = y^{-1}\)那么我们可以对于选了i条边的方案算\(a^{i}\) 可是这样需要容斥,所以有个神奇的技巧 \((a - 1 + 1)^{i} = \sum_{j = 0}^{i}(a - 1)^{j}\binom{i}{j}\) 这样,对于至少选了\(j\)条边的方案,每选一…
题面 传送门 题解 计算几何的东西我好像都已经忘光了-- 首先我们可以把原问题转化为另一个等价的问题:对于每一个敌人,我们以原点为圆心,画一个经过该点的圆,把这个圆在多边形内部的圆弧的度数加入答案.求总的度数是多少 因为这是个简单多边形,我们可以把它给三角形剖分.就是说把每条边都和原点构成一个三角形,然后对圆计算这个三角形的贡献,根据这条边的顺逆时针顺序来决定贡献要加上还是减去.易知最后的贡献就是这个多边形的贡献 那么我们对于每一个圆,暴力枚举多边形的一条边和原点构成的三角形,然后判一下圆弧和三…