前几天用CNN识别手写数字集,后来看到kaggle上有一个比赛是识别手写数字集的,已经进行了一年多了,目前有1179个有效提交,最高的是100%,我做了一下,用keras做的,一开始用最简单的MLP,准确率只有98.19%,然后不断改进,现在是99.78%,然而我看到排名第一是100%,心碎 = =,于是又改进了一版,现在把最好的结果记录一下,如果提升了再来更新. 手写数字集相信大家应该很熟悉了,这个程序相当于学一门新语言的“Hello World”,或者mapreduce的“WordCount…
最近忙里偷闲学习了一点机器学习的知识,看到神经网络算法时我和阿Kun便想到要将它用Python代码实现.我们用了两种不同的方法来编写它.这里只放出我的代码. MNIST数据集基于美国国家标准与技术研究院的两个数据集构建而成.训练集中包含250个人的手写数字,其中50%是高中生,50%来自人口调查局.每个训练集的数字图片像素为28x28.MNIST数据集可通过 下载链接 下载,它包含以下内容: 训练集图像:train-images-idx3-ubyte.gz,包含60000个样本 训练集类标:tr…
卷积神经网络目前被广泛地用在图片识别上, 已经有层出不穷的应用, 如果你对卷积神经网络充满好奇心,这里为你带来pytorch实现cnn一些入门的教程代码 #首先导入包 import torchfrom torch.autograd import Variableimport torch.nn as nnimport torchvisionimport torch.utils.data as Data #一.数据准备 #训练数据:用了torchvision.datasets.MNIST,root是…
写在开头:这个实验和matlab手写神经网络实现识别手写数字一样. 实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手写数字图片,于是我就尝试用matlab写一个网络. 实验数据:5000张手写数字图片(.jpg),图片命名为1.jpg,2.jpg-5000.jpg.还有一个放着标签的excel文件. 数据处理:前4000张作为训练样本,后1000张作为测试样本. 图片处理:用matlab的imread()函数读取…
在之前的一章中我们讲到的keras手写数字集的识别中,所使用的loss function为‘mse’,即均方差.那我们如何才能知道所得出的结果是不是overfitting?我们通过运行结果中的training和testing即可得知. 源代码与运行截图如下: #!/usr/bin/env python # -*- coding: utf-8 -*- # @Time : 2019/9/9 13:23 # @Author : BaoBao # @Mail : baobaotql@163.com #…
一.前述 本文讲述用Tensorflow框架实现SoftMax模型识别手写数字集,来实现多分类. 同时对模型的保存和恢复做下示例. 二.具体原理 代码一:实现代码 #!/usr/bin/python # -*- coding: UTF-8 -*- # 文件名: 12_Softmax_regression.py from tensorflow.examples.tutorials.mnist import input_data import tensorflow as tf # mn.SOURCE…
实现我们分类数字的网络 好,让我们使用随机梯度下降和 MNIST训练数据来写一个程序来学习怎样识别手写数字. 我们用Python (2.7) 来实现.只有 74 行代码!我们需要的第一个东西是 MNIST数据.如果有 github 账号,你可以将这些代码库克隆下来, git clone https://github.com/mnielsen/neural-networks-and-deep-learning.git 或者你可以到这里 下载. 顺便说一下, 当我先前说到 MNIST 数据集时,我说…
实验说明 一直想自己写一个神经网络来实现手写数字的识别,而不是套用别人的框架.恰巧前几天,有幸从同学那拿到5000张已经贴好标签的手写数字图片,于是我就尝试用matlab写一个网络. 实验数据:5000张手写数字图片(.jpg),图片命名为1.jpg,2.jpg-5000.jpg.还有一个放着标签的excel文件. 数据处理:前4000张作为训练样本,后1000张作为测试样本. 图片处理:用matlab的imread()函数读取图片的灰度值矩阵(28,28),然后把每张图片的灰度值矩阵resha…
主要内容: 1.基于CNN的mnist手写数字识别(详细代码注释) 2.该实现中的函数总结 平台: 1.windows 10 64位 2.Anaconda3-4.2.0-Windows-x86_64.exe (当时TF还不支持python3.6,又懒得在高版本的anaconda下配置多个Python环境,于是装了一个3-4.2.0(默认装python3.5),建议装anaconda3的最新版本,TF1.2.0版本已经支持python3.6!) 3.TensorFlow1.1.0 CNN的介绍可以…
代码: import torch import torch.nn as nn import torch.utils.data as Data import torchvision # 数据库模块 import matplotlib.pyplot as plt torch.manual_seed() # reproducible # Hyper Parameters EPOCH = # 训练整批数据多少次, 为了节约时间, 我们只训练一次 BATCH_SIZE = LR = 0.001 # 学习率…