针对分割问题,官方已经划分好了:http://cs.nyu.edu/~silberman/projects/indoor_scene_seg_sup.html import numpy as np import scipy.io as sio data = sio.loadmat('splits.mat') train_idx = data['trainNdxs'] test_idx = data['testNdxs'] train_size = len(train_idx) test_size…
CIFAR-10数据集含有6万个32*32的彩色图像,共分为10种类型,由 Alex Krizhevsky, Vinod Nair和 Geoffrey Hinton收集而来.包含50000张训练图片,10000张测试图片 http://www.cs.toronto.edu/~kriz/cifar.html 数据集的数据存在一个10000*3072 的 numpy数组中,单位是uint8s,3072是存储了一个32*32的彩色图像.(3072=1024*3).前1024位是r值,中间1024是g值…
一.深度学习在小数据集的表现 深度学习在小数据集情况下获得好效果,可以从两个角度去解决: 1.降低偏差,图像平移等操作 2.降低方差,dropout.随机梯度下降 先来看看深度学习在小数据集上表现的具体观点,来源于<撕起来了!谁说数据少就不能用深度学习?这锅俺不背!> 原文:https://simplystatistics.org/2017/05/31/deeplearning-vs-leekasso/ 1.样本数量少于100个,最好不要使用深度学习 倘若你的样本数量少于100个,最好不要使用…
2006年,机器学习界泰斗Hinton,在Science上发表了一篇使用深度神经网络进行维数约简的论文 ,自此,神经网络再次走进人们的视野,进而引发了一场深度学习革命.深度学习之所以如此受关注,是因为它在诸如图像分类.目标检测与识别.目标跟踪.语音识别.游戏(AlphaGo)等多个领域取得了相当优秀的成绩,掀起了又一波人工只能浪潮.深度学习技术逐渐成为机器学习领域的前沿技术,近年来得到了突飞猛进的发展,这得益于机器学习技术的进步以及计算设备性能的提升.英伟达公司研发的图形处理器(Graphics…
转载来源:http://blog.csdn.net/fengbingchun/article/details/50087005 这篇文章主要是为了对深度学习(DeepLearning)有个初步了解,算是一个科普文吧,文章中去除了复杂的公式和图表,主要内容包括深度学习概念.国内外研究现状.深度学习模型结构.深度学习训练算法.深度学习的优点.深度学习已有的应用.深度学习存在的问题及未来研究方向.深度学习开源软件. 一.            深度学习概念 深度学习(Deep Learning, DL…
CNCC2017中的深度学习与跨媒体智能 转载请注明作者:梦里茶 目录 机器学习与跨媒体智能 传统方法与深度学习 图像分割 小数据集下的深度学习 语音前沿技术 生成模型 基于贝叶斯的视觉信息编解码 珠算:基于别噎死推断的深度生成模型库 图像与视频生成的规则约束 景深风景生成 骨架约束的人体视频生成 跨媒体智能 视频检索的哈希学习 多媒体与知识图谱 基于锚图的视觉数据分析 视频问答 细粒度分类 跨媒体关联与检索(待补充) 正片开始 传统方法与深度学习 图像分割 图像分割是医疗图像中一个很重要的任务…
特别说明:要在我的随笔后写评论的小伙伴们请注意了,我的博客开启了 MathJax 数学公式支持,MathJax 使用$标记数学公式的开始和结束.如果某条评论中出现了两个$,MathJax 会将两个$之间的内容按照数学公式进行排版,从而导致评论区格式混乱.如果大家的评论中用到了$,但是又不是为了使用数学公式,就请使用\$转义一下,谢谢. 想从头阅读该系列吗?下面是传送门: Linux 桌面玩家指南:01. 玩转 Linux 系统的方法论 Linux 桌面玩家指南:02. 以最简洁的方式打造实用的…
版权声明:本文为博主原创文章,欢迎转载,并请注明出处.联系方式:460356155@qq.com 前面几篇文章介绍了MINIST,对这种简单图片的识别,LeNet-5可以达到99%的识别率. CIFAR10是另一个著名的深度学习图像分类识别数据集,比MINIST更复杂,而且是RGB彩色图片. 看看较简单的LeNet-5可以达到多少准确率.网络结构基本和前面MINIST代码中的差不多,主要是输入图片的通道数不同,代码如下: # -*- coding:utf-8 -*- u"""…
博客转载自:https://blog.csdn.net/u010821666/article/details/78793225 原文标题:深度学习结合SLAM的研究思路/成果整理之 1. 深度学习跟SLAM的结合点 深度学习和slam的结合是近几年比较热的一个研究方向,具体的研究方向,我简单分为三块,如下. 1.1 深度学习结合SLAM的三个方向 用深度学习方法替换传统SLAM中的一个/几个模块 特征提取,特征匹配,提高特征点稳定性,提取点线面等不同层级的特征点. 深度估计 位姿估计 重定位 其…
欢迎大家关注我们的网站和系列教程:http://www.tensorflownews.com/,学习更多的机器学习.深度学习的知识! 现今最主流的处理图像数据的技术当属深度神经网络了,尤其是卷积神经网络CNN尤为出名.本文将通过讲解CNN的介绍以及使用keras搭建CNN常用模型LeNet-5实现对MNist数据集分类,从而使得读者更好的理解CNN. 1.CNN的介绍 CNN是一种自动化提取特征的机器学习模型.首先我们介绍CNN所用到一些基本结构单元: 1.1卷积层:在卷积层中,有一个重要的概念…