利用R进行多元线性回归分析】的更多相关文章

对于一个因变量y,n个自变量x1,...,xn,要如何判断y与这n个自变量之间是否存在线性关系呢? 肯定是要利用他们的数据集,假设数据集中有m个样本,那么,每个样本都分别对应着一个因变量和一个n维的自变量: m个样本,就对应着一个m维的列向量Y,一个m×n维的矩阵X Y是X的每一列X1,...,Xn的函数 那么,Y与X1,...,Xn之间到底是什么关系呢?是满足Y=a1*X1+...+an*Xn这样的线性关系还是Y=f(X1,...,Xn)这样的非线性关系呢? 为了解决这个问题,可以首先利用多元…
#线性模型中有关函数#基本函数 a<-lm(模型公式,数据源) #anova(a)计算方差分析表#coef(a)提取模型系数#devinace(a)计算残差平方和#formula(a)提取模型公式#plot(a)绘制模型诊断图#predict(a)用作预测#print(a)显示#residuals()计算残差#setp()逐步回归分析#summary()提取模型资料 #多元线性回归分析 #回归系数的估计 #显著性检验: 1回归系数的显著性检验 t检验 就是检验某个变量系数是否为0 2回归方程的显…
逐步回归 向前引入法:从一元回归开始,逐步加快变量,使指标值达到最优为止 向后剔除法:从全变量回归方程开始,逐步删去某个变量,使指标值达到最优为止 逐步筛选法:综合上述两种方法 多元线性回归的核心问题:应该选择哪些变量? RSS(残差平方和)与R2(相关系数平方)选择法:遍历所有可能的组合,选出使RSS最小,R2最大的模型 AIC(Akaike information criterion)准则和BIC(Bayesian information criterion)准则 AIC=n×ln(RSSP…
y,X1,X2,X3 分别表示第 t 年各项税收收入(亿元),某国生产总值GDP(亿元),财政支出(亿元)和商品零售价格指数(%). (1) 建立线性模型: ① 自己编写函数: > library(openxlsx) > data = read.xlsx("22_data.xlsx",sheet = 1) > x = data[,-c(1,2)] > x = cbind(rep(1,17),x) > x_mat = as.matrix(x) > y…
R中的线性回归函数比较简单,就是lm(),比较复杂的是对线性模型的诊断和调整.这里结合Statistical Learning和杜克大学的Data Analysis and Statistical Inference的章节以及<R语言实战>的OLS(Ordinary Least Square)回归模型章节来总结一下,诊断多元线性回归模型的操作分析步骤.   1.选择预测变量   因变量比较容易确定,多元回归模型中难在自变量的选择.自变量选择主要可分为向前选择(逐次加使RSS最小的自变量),向后…
[译文]利用STAN做贝叶斯回归分析:Part 2 非正态回归 作者 Lionel Hertzogn 前一篇文章已经介绍了怎样在R中调用STAN对正态数据进行贝叶斯回归.本文则将利用三个样例来演示怎样在R中利用STAN拟合非正态模型. 三个样例各自是negative binomial回归(过离散的泊松数据).gamma回归(右偏的连续数据)和beta-binomial回归(过离散的二项数据). 相关的STAN代码及一些说明会贴在本文末尾. 负二项回归 泊松分布经常使用于计数数据建模,它如果了数据…
http://blog.csdn.net/hwwn2009/article/details/38414911 一元线性回归分析及java实现 2014-08-07 11:02 1072人阅读 评论(0) 收藏 举报  分类: DataMining(17)  一元线性回归分析是处理两个变量之间关系的最简单模型,它所研究的对象是两个变量之间的线性相关关系.通过对这个模型的讨论,我们不仅可以掌握有关一元线性回归的知识,而且可以从中了解回归分析方法的基本思想.方法和应用. 一.问题的提出 例2-1-1 …
MATLAB一元线性回归分析应用举例 作者:凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ huigui.m function [b,bint,r,rint,states,sima2,p,y0,zxqj]=huigui(x,y,x0) %x –p元线性模型自变量的n个观测值的n×p矩阵,y -p元线性模型因变量的n个观测值的n×1向量,x0为预测值的横坐标 %b -模型系数β的最小二乘估计值,bint -模型系数β的100(1-alpha)%置信区间,r…
Refer:http://python.jobbole.com/81215/ 本文参考了博乐在线的这篇文章,在其基础上加了一些自己的理解.其原文是一篇英文的博客,讲的通俗易懂. 本文通过一个简单的例子:预测房价,来探讨怎么用python做一元线性回归分析. 1. 预测一下房价 房价是一个很火的话题,现在我们拿到一组数据,是房子的大小(平方英尺)和房价(美元)之间的对应关系,见下表(csv数据文件): 从中可以大致看出,房价和房子大小之间是有相关关系的,且可以大致看出来是线性相关关系.为了简单起见…
第一天机器学习100天|Day1数据预处理,我们学习了数据预处理.知道了,数据预处理是机器学习中最基础和最麻烦,未来占用时间最长的一步操作.数据预处理一般有六个步骤,导入库.导入数据集.处理缺失值.分类数据转化.分出训练集和测试集.特征缩放等.在处理数据过程中,必须得两个库是numpy和pandas,也用到sklearn.preprocessing中的Imputer,LabelEncoder, OneHotEncoder,StandardScaler. 算法本身很简单,之前也有文章做过算法的解读…