2006 年,Hinton 等人基于受限波尔兹曼机(Re- stricted Boltzmann Machines, RBMs)提出的深度信念 网络(Deep Belief Networks, DBNs)是深度学习理论在 机器学习领域打响的第一枪,并成为了其后至今深度学 习算法的主要框架.在该算法中,DBN 由若干层 RBM 级联而成,得益于对比散度(Contrastive Divergence, CD)的高效近似算法,DBN 绕过了多隐层神经网络整 体训练的难题,将其简化为多个 RBM 的训练…