GOOGLE开发自己的加速机器学习的芯片已经不是什么秘密了,最先发布出来的是TPU(Tensor Processing Units),在2016年5月I/O开发大会上发布的.可是没有发布相关的细节情况.仅仅是说T ensorFlow框架在上面执行机器学习算法能够优化执行. 今天.GOOGLE第一次把这些项目的细节和评判标准发布出来. 论文下载地址: http://download.csdn.net/detail/caimouse/9804927 watermark/2/text/aHR0cDov…
Homepage/演示网站:https://pair-code.github.io/facets/ Pypi:https://pypi.org/project/facets-overview/ Github:https://github.com/PAIR-code/facets 1. 什么是Facets? Better data leads to better models. 机器学习的强大之处在于从大量数据中学习到其中的模式.构建一个机器学习系统时,理解你的数据是关键的一步. Facets包含…
1 - MLCC 通过机器学习,可以有效地解读数据的潜在含义,甚至可以改变思考问题的方式,使用统计信息而非逻辑推理来处理问题. Google的机器学习速成课程(MLCC,machine-learning crash-course):https://developers.google.com/machine-learning/crash-course/ 支持多语言,共25节课程,包含40多项练习,有对算法实际运用的互动直观展示,可以更容易地学习和实践机器学习概念. 官方预估时间大约15小时(实际花…
Google发布机器学习平台Tensorflow游乐场-带你玩神经网络 原文地址:http://f.dataguru.cn/article-9324-1.html> 摘要: 昨天,Google发布了Tensorflow游乐场.Tensorflow是Google今年推出的机器学习开源平台.而有了Tensorflow游乐场,我们在浏览器中就可以训练自己的神经网络,还有酷酷的图像让我们更直观地了解神经网络的工作原理.今 ... 网络 工具 机器学习 神经网络 Tensorflow 昨天,Google发…
TensorFlow是什么? TensorFlow是Google开源的第二代用于数字计算(numerical computation)的软件库.它是基于数据流图的处理框架,图中的节点表示数学运算(mathematical operations),边表示运算节点之间的数据交互.TensorFlow从字面意义上来讲有两层含义,一个是Tensor,它代表的是节点之间传递的数据,通常这个数据是一个多维度矩阵(multidimensional data arrays)或者一维向量:第二层意思Flow,指的…
Google 工程教育团队已经发布了多语种的 Google 机器学习术语表,该术语表中列出了一般的机器学习术语和 TensorFlow 专用术语的定义.语言版本包括西班牙语,法语,韩语和简体中文. 查阅中文版术语表: https://developers.google.com/machine-learning/crash-course/glossary?hl=zh-cn…
选自 Google Drive 作者:Norman P. Jouppi 等 痴笑@矽说 编译 该论文将正式发表于 ISCA 2017 从去年七月起,Google就号称了其面向深度学习的专用集成电路(ASIC)产品——Tensor Processing Unit (TPU),然而其神秘面纱一直未被揭开.直至本周,Google公开了其向ISCA(国际计算机体系架构年会)投稿的的预录取论文——In Datacenter Performance Analysis of a Tensor Processi…
20 个顶尖的 Python 机器学习开源项目 机器学习 2015-06-08 22:44:30 发布 您的评价: 0.0 收藏 1收藏 我们在Github上的贡献者和提交者之中检查了用Python语言进行机器学习的开源项目,并挑选出最受欢迎和最活跃的项目.” 图1:在GitHub上用Python语言机器学习的项目,图中颜色所对应的Bob, Iepy, Nilearn, 和NuPIC拥有最高的价值. 1. Scikit-learn www.github.com/scikit-learn/scik…
本文由云+社区发表 做为大数据生态系统中最重要的底层存储文件系统HDFS,为了保证系统的可靠性,HDFS通过多副本的冗余来防止数据的丢失.通常,HDFS中每一份数据都设置两个副本,这也使得存储利用率仅为1/3,每TB数据都需要占用3TB的存储空间.随着数据量的增长,复制的代价也变得越来越明显:传统的3份复制相当于增加了200%的存储开销,给存储空间和网络带宽带来了很大的压力.因此,在保证可靠性的前提下如何提高存储利用率已成为当前HDFS应用的主要问题之一. 针对这些问题,英特尔.Cloudera…
现在机器学习逐渐成为行业热门,经过二十几年的发展,机器学习目前也有了十分广泛的应用,如:数据挖掘.计算机视觉.自然语言处理.生物特征识别.搜索引擎.医学诊断.DNA序列测序.语音和手写识别.战略游戏和机器人等方面. 翻译整理了目前GitHub上最受欢迎的28款开源的机器学习项目,以供开发者参考使用. 1. TensorFlow TensorFlow 是谷歌发布的第二代机器学习系统.据谷歌宣称,在部分基准测试中,TensorFlow的处理速度比第一代的DistBelief加快了2倍之多.具体的讲,…