转自http://blog.csdn.net/han_xiaoyang/article/details/51191386 – 谷歌的无人车和机器人得到了很多关注,但我们真正的未来却在于能够使电脑变得更聪明,更人性化的技术,机器学习. – 埃里克 施密特(谷歌首席执行官) 当计算从大型计算机转移至个人电脑再转移到云的今天,我们可能正处于人类历史上最关键的时期.之所以关键,并不是因为已经取得的成就,而是未来几年里我们即将要获得的进步和成就. 对我来说,如今最令我激动的就是计算技术和工具的普及,从而带…
本文由 伯乐在线 - Agatha 翻译,唐尤华 校稿.未经许可,禁止转载!英文出处:SUNIL RAY.欢迎加入翻译组. 前言 谷歌董事长施密特曾说过:虽然谷歌的无人驾驶汽车和机器人受到了许多媒体关注,但是这家公司真正的未来在于机器学习,一种让计算机更聪明.更个性化的技术. 也许我们生活在人类历史上最关键的时期:从使用大型计算机,到个人电脑,再到现在的云计算.关键的不是过去发生了什么,而是将来会有什么发生. 工具和技术的民主化,让像我这样的人对这个时期兴奋不已.计算的蓬勃发展也是一样.如今,作…
本篇文章是原文的译文,然后自己对其中做了一些修改和添加内容(随机森林和降维算法).文章简洁地介绍了机器学习的主要算法和一些伪代码,对于初学者有很大帮助,是一篇不错的总结文章,后期可以通过文中提到的算法展开去做一些实际问题. Google的自驾车和机器人得到了很多新闻,但公司的真正未来是机器学习,这种技术使计算机变得更智能,更个性化.-Eric Schmidt (Google Chairman) 我们可能生活在人类历史上最具影响力的时期--计算从大型主机到PC移动到云计算的时期. 但是使这段时期有…
作者:寒小阳 && 龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49797143 http://blog.csdn.net/longxinchen_ml/article/details/49798139 声明:版权所有,转载请联系作者并注明出处,谢谢. 1.引言 先说一句,年末双十一什么的一来,真是非(mang)常(cheng)欢(gou)乐(le)!然后push自己抽出时间来写这篇blog的…
0序 随着移动互联和大数据的拓展越发觉得算法以及模型在设计和开发中的重要性.不管是现在接触比较多的安全产品还是大互联网公司经常提到的人工智能产品(甚至人类2045的的智能拐点时代).都基于算法及建模来处理.     常见的词汇:机器学习.数据建模.关联分析.算法优化等等,而这些种种又都是基于规律的深度开发(也难怪道德经的首篇就提出道可道非常道,名可名非常名的说法),不管是线性还是非线性,总之存在关联关系,而我们最好理解的就是线性关系,简单的用个函数就能解决.比如我们生活中应用的比较的归纳总结,其…
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(logistic regression)虽然叫回归,但他做的事实际上是分类.这里我们讨论二元分类,即只分两类,y属于{0,1}. 选择如下的假设函数: 这里写图片描述 其中: 这里写图片描述 上式称为逻辑函数或S型函数,图像如下图: 这里写图片描述 可以看到,当z趋向正无穷,g(z)趋向1,当z趋向负无穷g(z)趋…
一.灰度世界算法 ① 算法原理 灰度世界算法以灰度世界假设为基础,该假设认为:对于一幅有着大量色彩变化的图像,R,G,B三个分量的平均值趋于同一灰度值Gray.从物理意义上讲,灰色世界法假设自然界景物对于光线的平均反射的均值在总体上是个定值,这个定值近似地为“灰色”.颜色平衡算法将这一假设强制应用于待处理图像,可以从图像中消除环境光的影响,获得原始场景图像. 一般有两种方法确定Gray值 1) 使用固定值,对于8位的图像(0~255)通常取128作为灰度值 2) 计算增益系数,分别计算三通道的平…
作者:viewmode=contents">龙心尘 && viewmode=contents">寒小阳 时间:2016年3月. 出处:http://blog.csdn.net/longxinchen_ml/article/details/50900070 http://blog.csdn.net/han_xiaoyang/article/details/50903562 声明:版权全部,转载请联系作者并注明出处 1.文章声明 博主是围棋小白.下棋规则都记不清…
目录 工作原理 python实现 算法实战 约会对象好感度预测 故事背景 准备数据:从文本文件中解析数据 分析数据:使用Matplotlib创建散点图 准备数据:归一化数值 测试算法:作为完整程序验证分类器 使用算法:构建完整可用的系统 手写识别系统 准备数据:将图像转换为测试向量 测试算法:使用k-近邻算法识别手写数字 小结 附录 工作原理 存在一个样本数据集合,也称作训练样本集,并且样本集中每个数据都存在标签,即我们知道样本集中每一数据与所属分类的对应关系.输入没有标签的新数据后,将新数据的…
目录 工作原理 python实现 算法实战 对mnist数据集进行聚类 小结 附录 工作原理 聚类是一种无监督的学习,它将相似的对象归到同一个簇中.类似于全自动分类(自动的意思是连类别都是自动构建的).K-均值算法可以发现k个不同的簇,且每个簇的中心采用簇中所含值的均值计算而成.它的工作流程的伪代码表示如下: 创建k个点作为起始质心 当任意一个点的簇分配结果发生改变时 对数据集中的每个数据点 对每个质心 计算质心与数据点之间的距离 将数据点分配到距其最近的簇 对每一个簇,计算簇中所有点的均值并将…