最近在做分布式模型实现时,使用到了这个函数. 可以说非常体验非常的好. 速度非常快,效果和softmax差不多. 我们知道softmax在求解的时候,它的时间复杂度和我们的词表总量V一样O(V),是性线性的,从它的函数方程式中,我们也可以很容易得出: softmax: f(x) = e^x / sum( e^x_i ) ; 它的需要对所有的词 e^x 求和; 所以当V非常大的时候,哪怕时间复杂度是O(V),这个求解的过程耗时也比较"严重": 设想一下,当我们在训练模型时, 我们知道目标…
本文介绍 wordvec的概念 语言模型训练的两种模型CBOW+skip gram word2vec 优化的两种方法:层次softmax+负采样 gensim word2vec默认用的模型和方法 未经许可,不要转载. 机器学习的输入都是数字,而NLP都是文字: 为了让机器学习应用在NLP上,需要把文字转换为数字,把文字嵌入到数学空间. 1. 词表示: 词的独热表示:onehot (词之间是孤立的) onehot: 思想:假设词表大小为N, 则每个单字表示为N维向量: 每个单字只有1位为1,其他为…
我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得非常简单,但是你对这些层具体是怎么实现的了解吗?你对softmax,softmax loss,cross entropy了解吗?相信很多人不一定清楚.虽然网上的资料很多,但是质量参差不齐,常常看得眼花缭乱.为了让大家少走弯路,特地整理了下这些知识点的来龙去脉,希望不仅帮助自…
 版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014380165/article/details/77284921 我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.虽然现在已经开源了很多深度学习框架(比如MxNet,Caffe等),训练一个模型变得非常简单,但是你对这些层具体是怎么实现的了解吗?你对softmax,softmax loss,cros…
TCP/IP 协议标准简单描述 说明 分为三部分:中文名称.缩写.说明. 应用层 DNS 域名服务 (DNS) 功能: 将域名转化为IP地址 BOOTP 引导程序协议 (BOOTP) 功能: 允许无盘工作站探查其IP地址.网络中的BOOTP服务器的IP地址以及要加载到内存中以引导机器的文件 (注:B…
简单描述RAID级别: RAID 0 是俩盘一起读写,如果一个坏了那么数据全丢失: RAID 1是一块写,一块用来备份,坏一块无所谓: RAID 2 ,3 ,4 不常用: 最常用的就是RAID 5和RAID 6 ,RAID 5允许坏一块盘,但是最少需要三块盘来做,做出来的容量是N-1的容量(相当于一块用来写校验信息): RAID 6允许坏2块盘,但是最少需要四块盘,容量是N-2(相当于俩盘校验): 一.RAID技术规范简介 RAID技术主要包含RAID -RAID 7等数个规范,它们的侧重点各不…
1.这里说的商品简单描述,不是商品的详细信息,而是后台编辑商品时在“其他信息”标签栏填写的那个“商品简单描述”,即goods_brief字段 2.修改lib_order.php文件的get_cart_goods()函数部分 将 $goods_thumb = $GLOBALS['db']->getOne("SELECT `goods_thumb` FROM " . $GLOBALS['ecs']->table('goods') . " WHERE `goods_id…
本文转载自:Java中会存在内存泄漏吗,请简单描述 会.java导致内存泄露的原因很明确:长生命周期的对象持有短生命周期对象的引用就很可能发生内存泄露,尽管短生命周期对象已经不再需要,但是因为长生命周期对象持有它的引用而导致不能被回收,这就是java中内存泄露的发生场景. 1.集合类,集合类仅仅有添加元素的方法,而没有相应的删除机制,导致内存被占用.这一点其实也不明确,这个集合类如果仅仅是局部变量,根本不会造成内存泄露,在方法栈退出后就没有引用了会被jvm正常回收.而如果这个集合类是全局性的变量…
1 softmax 我们知道卷积神经网络(CNN)在图像领域的应用已经非常广泛了,一般一个CNN网络主要包含卷积层,池化层(pooling),全连接层,损失层等.这一篇主要介绍全连接层和损失层的内容,算是网络里面比较基础的一块内容.先理清下从全连接层到损失层之间的计算.来看下面这张图. 这张图的等号左边部分就是全连接层做的事,W是全连接层的参数,我们也称为权值,X是全连接层的输入,也就是特征.从图上可以看出特征X是N*1的向量,这是怎么得到的呢?这个特征就是由全连接层前面多个卷积层和池化层处理后…
简介 在本节中,我们介绍Softmax回归模型,该模型是logistic回归模型在多分类问题上的推广,在多分类问题中,类标签  可以取两个以上的值. Softmax回归模型对于诸如MNIST手写数字分类等问题是很有用的,该问题的目的是辨识10个不同的单个数字.Softmax回归是有监督的,不过后面也会介绍它与深度学习/无监督学习方法的结合.(译者注: MNIST 是一个手写数字识别库,由NYU 的Yann LeCun 等人维护.http://yann.lecun.com/exdb/mnist/ …