[LOJ 2092][BZOJ 4573][UOJ 195][ZJOI 2016]大森林 题意 给定一个树序列, 初始时所有树都只有一个点, 要求支持三种操作: 区间种树(在某个特定点上长出一个子结点) 区间更改种树点(就是改上面那个操作中的「特定点」) 查询某棵树上两个点间的距离 \(n\le 1\times 10^5, q\le 2\times 10^5\). 不强制在线. 长出来的点标号一致, 与种树操作的顺序一致. 保证2操作合法. 题解 ZJOI都是神仙题啊QAQ... 首先这题序列上…
[BZOJ 4455] [ZJOI 2016] 小星星 (树形dp+容斥原理+状态压缩) 题面 给出一棵树和一个图,点数均为n,问有多少种方法把树的节点标号,使得对于树上的任意两个节点u,v,若树上u,v之间有一条边,图上u,v对应的点之间也有一条边. \(n \leq 17\) 分析 看到\(n \leq 17\),我们应该想到状态压缩.但直接用子集dp的时间复杂度为\(O(3^nn^3)\),会TLE.所以我们压缩的状态可能有问题,考虑优化. 显然题目给了两个限制: 原树中的每条边都要在图中…
原文链接http://www.cnblogs.com/zhouzhendong/p/8682133.html 题目传送门 - BZOJ4456 题目传送门 - UOJ#184 题意 $n\times m$的网格图$q$次询问两个格子之间的最短路. $n\times m\leq 2\times 10^4,q\leq 10^5$且任何两个相邻格子之间的路径长度$\leq 10^4$. 题解 考虑分治. 对于当前网格图以及起点和终点都在当前网格图内的询问进行处理. 考虑把当前网格图的长边作为分治对象.…
[LOJ 2720][BZOJ 5417][UOJ 395][NOI 2018]你的名字 题意 给定一个大串 \(S\) 以及 \(q\) 次询问, 每次询问给定一个串 \(T\) 和区间 \([l,r]\), 求 \(T\) 中有多少本质不同的子串不是 \(S[l:r]\) 的子串. \(|S|\le 5\times 10^5,q\le 10^5,\sum|T|\le10^6\). 题解 普通的码农字符串题... 获得成就: \(40\texttt{min}(2400\texttt{s})\)…
[BZOJ 3110] [luogu 3332] [ZJOI 2013]k大数查询(权值线段树套线段树) 题面 原题面有点歧义,不过从样例可以看出来真正的意思 有n个位置,每个位置可以看做一个集合. 1 a b c :在a-b的每个集合中插入一个数c 2 a b c :2:询问将a-b的每个集合合并到一起后所有元素的第c大 分析 外层用权值线段树维护值,内层用普通线段树维护位置 我们先考虑全局询问第k大的情况,显然只需要权值线段树维护全局值的出现情况,区间[L,R]存储值落在[L,R]内的元素数…
http://www.lydsy.com/JudgeOnline/problem.php?id=4456 http://uoj.ac/problem/184 参考(抄)的晨爷的题解(代码) 对矩形进行分治. 每次对一个分治中的矩形,枚举中轴线上的点,依次做dijkstra,范围是该矩形内的点. 处理出中轴线上的点到矩形内所有点的最短路,这样,两点在该矩形内的询问就可以用$dist+dist$更新了,意义是两点经过该中轴线的最短路. 在把矩形劈成两半,把询问也分成两半,递归分治. 因为两点间的最短…
http://www.lydsy.com/JudgeOnline/problem.php?id=4455 http://uoj.ac/problem/185 有一个$O(n^n)$的暴力,放宽限制可以转化成$O(2^n)$的容斥,容斥每一层统计用$O(n^3)$的dp来统计.时间复杂度$O(n^3 2^n)$. 卡常!存图用邻接表!减小非递归函数的使用,尽量写到主函数里! 最后终于卡过了QwQ #include<cstdio> #include<cstring> #include&…
题目链接 (BZOJ) https://www.lydsy.com/JudgeOnline/problem.php?id=4732 (UOJ) http://uoj.ac/problem/268 题解 首先考虑,给定一条路径,如何计算与其相交的所有路径的权值和?显然一条路径和另一条路径相交,当且仅当这条路径的LCA在另一条路径上,或者另一条路径的LCA在这条路径上.那么我们考虑维护两个数组\(a\)和\(b\), 分别表示以某点为LCA的路径权值和以及覆盖这个点但不以该点为LCA的路径权值和,则…
题意 http://uoj.ac/problem/184 题解 大概是神题. 网格图上跑最短路有一个经典的优化方式:分治分组跑最短路. 对于这道题,设矩形长为 \(n\),宽为 \(m\),则对 \(n,m\) 中更大的一个二分. 这里只考虑按 \(n\) 分治的情况. 如上图,设 \(S=nm\),因为此时一列的点数是小等于 \(\sqrt{S}\) 的,所以我们可以枚举红色分割线上的点,以每个点为原点,跑到矩形中所有点的最短路. 然后考虑询问: 如果询问的两点在分割线的不同侧(或者至少有一端…
题面 https://www.lydsy.com/JudgeOnline/problem.php?id=4456 题解 分治 设当前work的区间为(x1,y1,x2,y2) 我们将长边分成两半 不妨设长边是(x1,x2) 那么令mid=(x1+x2)/2 对于分界线(mid,y1)~(mid,y2)的所有点 我们做最短路 得到分界线上所有点到区间里任意点的最短路 那么对于询问(sx,sy,tx,ty) 我们可以枚举分界线上某一点(mid,y) 并且用dist((mid,y),(sx,sy))+…