loj2318 「NOIP2017」宝藏[状压DP]】的更多相关文章

附带其他做法参考:随机化(模拟退火.爬山等等等)配合搜索剪枝食用. 首先题意相当于在图上找一颗生成树并确定根,使得每个点与父亲的连边的权乘以各自深度的总和最小.即$\sum\limits_{i}depth_i\times value_{i→fa}$. 看数据范围想状压,固定好一个点为根,然后每个点选没选看做状态$0/1$压位,于是朴素思想是$f[S][S_0][d]$表示已经选了$S$,当前$d$层选了$S'$($S'\subset S$),这样一定可以保证由$S'$导出第$d+1$层,更新答案…
问题描述 BZOJ2073 题解 发现 \(n \le 16\) ,显然想到状压 设 \(opt[S]\) 代表过河集合为 \(S\) 时,最小时间. 枚举 \(S\) 的子集,进行转移 枚举子集的方法 对于 \(j\) 为 \(k\) 的子集 当知道 \(j\) 时 for(int k=(j+1)|j;k<=S;k=(k+1)|j) 当知道 \(k\) 时 for(int j=(k-1)&k;j;j=(j-1)&k) \(\mathrm{Code}\) #include<bi…
为啥我去年这么菜啊..... 我现在想了$20min$后打了$10min$就过了$qwq$. 我们用$f[i][j]$表示当前深度为$i$,访问了状态$j$中的所有点的最小代价. 显然$f[i][j]=min(f[i-1][k]+i\times get(k,j^k)) $其中$k$为$j$的子集,$get(x,y)$表示点集$y$中所有点分别向点集$x$连边的最小代价. 显然这个dp的时间复杂度是$O(3^n\times n^2)$的. 考虑到n非常小,然后就过了. 然而我当年不会枚举子集,甚至…
「NOIP2017」宝藏 题解 博客阅读效果更佳 又到了一年一度NOIPCSP-S 赛前复习做真题的时间 于是就遇上了这道题 首先观察数据范围 \(1 \le n \le 12\) ,那么极大可能性是状压 \(\texttt{DP}\) 或者 \(\texttt{DFS}\) 爆搜 但由于这题放在了 \(\texttt{DP}\) 列表里面,于是优先考虑状压 简化题意: 从给定的 \(n\) 个点,\(m\) 条边的有重边的无向联通图中,找出一棵生成树,使得题目所求价值最小 从题目给出的建边价值…
[NOIP2017]宝藏 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 n 个深埋在地下的宝藏屋, 也给出了这 n 个宝藏屋之间可供开发的 m 条道路和它们的长度. 小明决心亲自前往挖掘所有宝藏屋中的宝藏.但是,每个宝藏屋距离地面都很远, 也就是说,从地面打通一条到某个宝藏屋的道路是很困难的,而开发宝藏屋之间的道路 则相对容易很多. 小明的决心感动了考古挖掘的赞助商,赞助商决定免费赞助他打通一条从地面到某 个宝藏屋的通道,通往哪个宝藏屋则由小明来决定. 在此基础上,小明还需要考虑…
洛谷题目传送门 Dalao的题解多数是什么模拟退火.DFS剪枝.\(O(3^nn^2)\)的状压DP之类.蒟蒻尝试着把状压改进了一下使复杂度降到\(O(3^nn)\). 考虑到每条边的贡献跟它所在的层有关,所以如果我们能够将一层的边一起加进去,计算就会方便许多.于是想办法把这个转移过程状压一下. 设\(f_{i,j}\)为当前已选点集为\(i\),下一层加入的点集为\(j\)时,新加入的所有点与原有点之间最小的边权之和.计算的具体实现,我们\(O(2^n)\)枚举\(i\),再枚举\(i\)的补…
正解:状压$dp$ 解题报告: 传送门$QwQ$ $8102$年的时候就想搞这题了,,,$9102$了$gql$终于开始做这题了$kk$ 发现有意义的状态只有当前选的点集和深度,所以设$f_{i,j}$表示当前深度为$i$,选了的点集状态为$j$. 然后转移就$f_{i,S}=min(f_{i-1,S_0}+cost)$,其中$S_0$为$S$的子集,$cost$为$S\ xor\ S_0$中的所有点和$S_0$的连边乘以$i$. 正确性显然?然后说下就,这里是并没有限制一定是和第$i-1$层的…
之前写了一份此题关于模拟退火的方法,现在来补充一下状压dp的方法. 其实直接在dfs中状压比较好想,而且实现也很简单,但是网上有人说这种方法是错的...并不知道哪错了,但是就不写了,找了一个正解. 正解的区别在于状态,(树高是啥意思),每次都是从当前状态的子集转移过来.这里用到了快速枚举子集的操作,很值得写一下. 题干: 题目描述 参与考古挖掘的小明得到了一份藏宝图,藏宝图上标出了 nnn 个深埋在地下的宝藏屋, 也给出了这 nnn 个宝藏屋之间可供开发的m mm 条道路和它们的长度. 小明决心…
题面 传送门:https://www.luogu.org/problemnew/show/P3959 Solution 这道题的是一道很巧妙的状压DP题. 首先,看到数据范围,应该状压DP没错了. 根据我们之前状压方程的设计经验,我们很快就能设计出这样的方程: 设f[i][j]表示用到第i个元素,当前连接状态为j的开销的min 但是我们很快就会发现,这个方程没法转移,因为随着连接方案的不同,新插入的点的K值会不同. 怎么办呢? 这时候我们可以重新设计一个巧妙的的状态. 重新阅读题目,我们可以发现…
时隔多年终于把这道题锅过了 数据范围显然用搜索剪枝状压dp. 可以记还有哪些点没到(或者已到了哪些点).我们最深已到的是哪些点.这些点的深度是多少,然后一层一层地往下推. 但其实是没必要记最深的那一层的,只要强行装作每次更新都是用最深的深度更新就可以.这样的话,虽然会有很多情况偏大,但是能正确更新的情况其实是都已经包括了. 因为你如果想以当前状态去更新,但用的还不是最深一层的点的话,干脆就可以在之前你想用那个点处于最后一层的时候去更新. 代码写的很捉急..最后常数也很捉急... #include…