【洛谷P2147】洞穴勘测】的更多相关文章

题目描述 辉辉热衷于洞穴勘测. 某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴.假如两个洞穴可以通过一条或者多条通道按一定顺序连接起来,那么这两个洞穴就是连通的,按顺序连接在一起的这些通道则被称之为这两个洞穴之间的一条路径. 洞穴都十分坚固无法破坏,然而通道不太稳定,时常因为外界影响而发生改变,比如,根据有关仪器的监测结果,123号洞穴和127号洞穴之间有时会出现一条通道,有时这…
题目描述 辉辉热衷于洞穴勘测. 某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴.假如两个洞穴可以通过一条或者多条通道按一定顺序连接起来,那么这两个洞穴就是连通的,按顺序连接在一起的这些通道则被称之为这两个洞穴之间的一条路径. 洞穴都十分坚固无法破坏,然而通道不太稳定,时常因为外界影响而发生改变,比如,根据有关仪器的监测结果,123号洞穴和127号洞穴之间有时会出现一条通道,有时这…
题目传送门 洞穴勘探 题目描述 辉辉热衷于洞穴勘测. 某天,他按照地图来到了一片被标记为JSZX的洞穴群地区.经过初步勘测,辉辉发现这片区域由n个洞穴(分别编号为1到n)以及若干通道组成,并且每条通道连接了恰好两个洞穴.假如两个洞穴可以通过一条或者多条通道按一定顺序连接起来,那么这两个洞穴就是连通的,按顺序连接在一起的这些通道则被称之为这两个洞穴之间的一条路径. 洞穴都十分坚固无法破坏,然而通道不太稳定,时常因为外界影响而发生改变,比如,根据有关仪器的监测结果,123号洞穴和127号洞穴之间有时…
题目大意:有$n$个洞穴,$m$条指令,指令有三种 $Connect\;u\;v$:在$u,v$之间连一条边 $Destroy\;u\;v$:切断$u,v$之间的边 $Query\;u\;v$:询问$u,v$是否连通 (数据保证合法) 题解:$LCT$(潘佳奇的板子) 卡点:无(潘佳奇的板子) C++ Code: #include <cstdio> #include <cstring> #define maxn 10010 using namespace std; int son[…
题目链接 LCT裸题.. #include <cstdio> #define R register int #define I inline void #define lc c[x][0] #define rc c[x][1] const int MAXN = 300010; inline int read(){ int s = 0, w = 1; char ch = getchar(); while(ch < '0' || ch > '9'){ if(ch == '-') w =…
题目链接 题解 早就想写线段树分治的题了. 对于每条边,它存在于一段时间 我们按时间来搞 我们可把一条边看做一条线段 我们可以模拟线段树操作,不断分治下去 把覆盖\(l-r\)这段时间的线段筛选出来,用并查集维护联通性,回溯时撤销操作 注意不能使用路径压缩(不能破坏树的结构,方便撤销操作) Code #include<bits/stdc++.h> #define LL long long #define RG register using namespace std; inline int g…
以下这个做法应该是叫线段树分治... 根据修改操作预处理出每条边存在的时间区间[l,r](以操作序号为时间),然后把所有形式化后的修改挂到线段树节点上. 处理完修改后,dfs一遍线段树,进入某个节点时把那个点上所有的修改操作做一遍连边(用按秩合并并查集),出来时再撤销那些连边:那么到达叶节点时,刚好就是完成了这个节点代表的时间所需要的一切修改操作 复杂度O(nlog^2n),比lct要大 这个东西跟cdq分治一样是时间分治,但是好像不能降维的样子(?反正想了很久没想通),不过能在有些有加入.删除…
Link-Cut-Tree的模板题啊......(听说还可以用其他的方法做,不管了,直接上LCT) 没有要求维护点权,只需要维护点的连通性即可. 就是朴素的LCT,居然还不要pushup. 感觉有些不适应啊.......不得不说LCT是个神器. 简单分析一下. 对于每种命令: 如果是Connect x y (链接 x y):直接 link(x,y)即可. 如果是Destroy x y (切断 x y):直接 cut(x,y)即可. 如果是Query x y (询问 x y 的连通性):判断fin…
Code: #include <cstdio> #include <algorithm> #include <string> #include <cstring> using namespace std; void setIO(string a){ freopen((a+".in").c_str(),"r",stdin); } #define maxn 10008 int n,m; struct Link_Cut_Tr…
题目大意:维护 N 个点的无向图,支持动态加边和删边,回答两点的连通性. 题解:线段树分治 + 可撤销并查集 询问可以离线,这是线段树分治的基础. 建立在操作时间轴上的线段树称为线段树分治算法. 本题中线段树维护的是当前时间段中出现的边的集合.分析可知,对于一条边来说,至多出现在线段树上 \(O(logm)\) 个节点的集合中,至多 \(M\) 条边,因此,线段树上的边集合大小一共为 \(O(mlogm)\).建立好线段树之后,从根开始 dfs 整棵树,每经过一个节点时,将当前时间区间内出现的边…