在很多场合需要高效率的肤色检测代码,本人常用的一个C++版本的代码如下所示: void IM_GetRoughSkinRegion(unsigned char *Src, unsigned char *Skin, int Width, int Height, int Stride) { ; Y < Height; Y++) { unsigned char *LinePS = Src + Y * Stride; // 源图的第Y行像素的首地址 unsigned char *LinePD = Ski…
关于局部均方差有着较为广泛的应用,在我博客的基于局部均方差相关信息的图像去噪及其在实时磨皮美容算法中的应用及使用局部标准差实现图像的局部对比度增强算法中都有谈及,即可以用于去噪也可以用来增强图像,但是直接计算其计算量较大,一般都是通过某种方式进行优化,典型的即通过积分图来处理: 展开: 上式中两个累积一个是平方积分图,一个是累加积分图,累加积分图在SSE图像算法优化系列六:OpenCv关于灰度积分图的SSE代码学习和改进中曾经谈及,而平方积分图由于数据范围的问题,用int类型的数据来处理的话,只…
无意中浏览一篇文章,中间提到了基于多尺度的图像的细节提升算法,尝试了一下,还是有一定的效果的,结合最近一直研究的SSE优化,把算法的步骤和优化过程分享给大家. 论文的全名是DARK IMAGE ENHANCEMENT BASED ON PAIRWISE TARGET CONTRAST AND MULTI-SCALE DETAIL BOOSTING,好像在百度上搜索不到,由于博客的空间不多了,这里就不上传了, 我贴出论文核心的字段. 论文的核心思想类似于Retinex,使用了三个尺度的高斯模糊,再…
在颜色空间系列1: RGB和CIEXYZ颜色空间的转换及相关优化和颜色空间系列3: RGB和YUV颜色空间的转换及优化算法两篇文章中我们给出了两种不同的颜色空间的相互转换之间的快速算法的实现代码,但是那个是C#版本的,为了比较方便,我们这里提供C版本的代码,以RGB转到YUV空间的代码为例: void RGBToYUV(unsigned char *RGB, unsigned char *Y, unsigned char *U, unsigned char *V, int Width, int…
这是一篇2010年比较古老的文章了,是在QQ群里一位群友提到的,无聊下载看了下,其实也没有啥高深的理论,抽空实现了下,虽然不高大上,还是花了点时间和心思优化了代码,既然这样,就顺便分享下优化的思路和经历. 文章的名字为:Contrast image correction method,由于本人博客的后台文件已经快超过博客园所容许的最大空间,这里就不直接上传文章了,大家可以直接点我提供的链接下载. 文章的核心就是对普通的伽马校正做改进和扩展,一般来说,伽马校正具有以下的标准形式: 其中I(i,j)…
本文是在学习https://blog.csdn.net/housisong/article/details/1452249一文的基础上对算法的理解和重新整理,再次非常感谢原文作者的深入分析以及分享. 三次卷积插值的基础原理也是对取样点附近的领域像素按照某种权重分布计算加权的结果值,比起双线性的4个领域像素计算,三次卷积涉及到了16个领域像素,这也决定了其取样点位置不是对称的,同时耗时比双线性也大为增加.     如左图所示,P00为向下取整后的取样点的坐标,其领域16个像素的位置整体靠取样点的右…
Girshick, Ross, et al. “Rich feature hierarchies for accurate object detection and semantic segmentation.” Proceedings of the IEEE conference on computer vision and pattern recognition. 2014. R-CNN的全称是Region-CNN,它可以说是第一个成功将深度学习应用到目标检测上的算法.后面要讲到的Fast…
分支判断的语句一般来说是不太适合进行SSE优化的,因为他会破坏代码的并行性,但是也不是所有的都是这样的,在合适的场景中运用SSE还是能对分支预测进行一定的优化的,我们这里以某一个算法的部分代码为例进行讲解. 在某一个版本的USM锐化算法中有这样的一段代码: int IM_UnsharpMask(unsigned char *Src, unsigned char *Dest, int Width, int Height, int Stride, int Radius, int Amount, in…
最近一直沉迷于SSE方面的优化,实在找不到想学习的参考资料了,就拿个笔记本放在腿上翻翻OpenCv的源代码,无意中看到了OpenCv中关于积分图的代码,仔细研习了一番,觉得OpenCv对SSE的灵活运用真的做的很好,这里记录下我对该段代码的品味并将其思路扩展到其他通道数的图像. 该核心代码位于:Opencv 3.0\opencv\sources\modules\imgproc\src\sumpixels.cpp文件中. 我们贴出最感兴趣的一部分代码以便分析: bool operator()(co…
1.简单介绍InnoDB给MySQL提供了具有提交,回滚和崩溃恢复能力的事务安全(ACID兼容)存储引擎.InnoDB锁定在行级并且也在SELECT语句提供一个Oracle风格一致的非锁定读.这些特色增加了多用户部署和性能.没有在InnoDB中扩大锁定的需要,因为在InnoDB中行级锁定适合非常小的空间.InnoDB也支持FOREIGN KEY强制.在SQL查询中,你可以自由地将InnoDB类型的表与其它MySQL的表的类型混合起来,甚至在同一个查询中也可以混合. 2.之所以选用innodb作为…
简单选择排序算法: 基本思想: 在待排序数据中,选出最小的一个数与第一个位置的数交换:然后在剩下的数中选出最小的数与第二个数交换:依次类推,直至循环到只剩下两个数进行比较为止. 实例: 0.初始状态 3,1,5,7,2,4,9,6(共8个数) 1.n=8 个数中,最小数值为1,与第一个数交换:1,3,5,7,2,4,9,6 2.剩下 n-1=7 个数中,最小数值为2,与第二个数交换:1,2,5,7,3,4,9,6 3.剩下 n-2=6 个数中,最小数值为3,与第三个数交换:1,2,3,7,5,4…
又有很久没有动笔了,主要是最近没研究什么东西,而且现在主流的趋势都是研究深度学习去了,但自己没这方面的需求,同时也就很少有动力再去看传统算法,今天一个人在家,还是抽空分享一个简单的算法吧. 前段日子在看水下图像处理方面的资料时,在github搜到一个链接,里面居然有好几篇文章附带的代码,除了水下图像的文章外,我看到了一篇<Adaptive Local Tone Mapping Based on Retinex for High Dynamic Range Images  >的文章,也还不算老,…
基于value-and-criterion structure方式的实现的滤波器在原理上其实比较简单,感觉下面论文中得一段话已经描述的比较清晰了,直接贴英文吧,感觉翻译过来反而失去了原始的韵味了. The value-and-criterion filter structure  is based on the geometrical structure of mathematical morphology, but allows the use of a much wider variety…
这里的高斯模糊采用的是论文<Recursive implementation of the Gaussian filter>里描述的递归算法. 仔细观察和理解上述公式,在forward过程中,n是递增的,因此,如果在进行forward之前,把in数据先完整的赋值给w,然后式子(9a)就可以变为:    w[n] = B w[n] + (b1 w[n-1] + b2 w[n-2] + b3 w[n-3]) / b0:     --------->     (1a) 在backward过程中…
前面有两篇文章详细介绍了mysql优化举措:Mysql优化系列(0)--总结性梳理Mysql优化系列(1)--Innodb引擎下mysql自身配置优化 下面分类罗列下Mysql性能优化的一些技巧,熟练掌握这些设置,将有利于Mysql性能提升: MySQL服务器硬件和操作系统优化调节1)拥有足够的物理内存来把整个InnoDB文件加载到内存中--在内存中访问文件时的速度要比在硬盘中访问时快的多.2)不惜一切代价避免使用Swap交换分区 – 交换时是从硬盘读取的,它的速度很慢.3)使用电池供电的RAM…
Java性能问题一直困扰着广大程序员,由于平台复杂性,要定位问题,找出其根源确实很难.随着10多年Java平台的改进以及新出现的多核多处理器,Java软件的性能和扩展性已经今非昔比了.现代JVM持续演进,内建了更为成熟的优化技术.运行时技术和垃圾收集器.与此同时,底层的硬件平台和操作系统也在演化. 目录: 一.Java性能优化系列之一--设计优化 二.Java性能优化系列之二--程序优化 三.Java性能优化系列之三--并发程序设计详解 四.Java性能优化系列之四--Java内存管理与垃圾回收…
1. Java内存区域 1.1 运行时数据区 Java虚拟机在执行Java程序的过程中会把它所管理的内存划分为若干个不同的数据区域.主要包括:程序计数器.虚拟机栈.本地方法栈.Java堆.方法区(运 行时常量池).直接内存. 程序计数器 程序计数器(Program Counter Register)是一块较小的内存空间,可以看作是当前线程所执行的字节码的行号指示器.在虚拟机概念模型中,字节码解释器工作时就是通过改变计数器的值来选取下一条需要执行的字节码指令,分支.循环.跳转.异常处理.线程恢复等…
2. 垃圾收集器与内存分配策略 垃圾收集(Garbage Collection, GC)是JVM实现里非常重要的一环,JVM成熟的内存动态分配与回收技术使Java(当然还有其他运行在JVM上的语言,如Scala等)程序员在提升开发效率上获得了惊人的便利.理解GC,对于理解JVM和Java语言有着非常重要的作用.并且当我们需要排查各种内存溢出.内存泄漏问题时,当垃圾收集称为系统达到更高并发量的瓶颈时,只有深入理解GC和内存分配,才能对这些"自动化"的技术实施必要的监控和调节. GC主要需…
3. 虚拟机执行子系统 3.1 Java跨平台的基础 Java刚诞生的宣传口号:一次编写,到处运行(Write Once, Run Anywhere),其中字节码是构成平台无关的基石,也是语言无关性的基础. Java虚拟机不和包括Java在内的任何语言绑定,它只与Class文件这种特定的二进制文件格式所关联,这使得任何语言的都可以使用特定的编译器将其源码编译成Class文件,从而在虚拟机上运行. 3.2 Class类的文件结构 任何一个Class文件都对应着唯一一个类或接口的定义信息,但反过来说…
5. 早期编译优化 早起编译优化主要指编译期进行的优化. java的编译期可能指的以下三种: 前端编译器:将.java文件变成.class文件,例如Sun的Javac.Eclipse JDT中的增量式编译器(ECJ) JIT编译器(Just In Time Compiler):将字节码变成机器码,例如HotSpot VM的C1.C2编译器 AOT编译器(Ahead Of Time Compiler):直接把*.java文件编译成本地机器码,例如GNU Compiler for the Java(…
6. 晚期编译优化 晚期编译优化主要是在运行时做的一些优化手段. 6.1 JIT编译器 在部分的商用虚拟机中,java程序最初是通过解释器(Interpreter) 进行解释执行的,当虚拟机发现某个方法或代码块的运行特别频繁时,就会把这些代码认定为"热点代码"(Hot Spot Code).为了提高热点代码的执行效率,在运行时,虚拟机将会把这些代码编译成与本地平台相关的机器码,并进行各种层次的优化,完成这个过程的编译器称为即时编译器(Just In Time Compiler) jav…
4. 编写高效Java程序 4.1 面向对象 构造器参数太多怎么办? 正常情况下,如果构造器参数过多,可能会考虑重写多个不同参数的构造函数,如下面的例子所示: public class FoodNormal { //required private final String foodName;//名称 private final int reilang;//热量 //optional private final int danbz;//蛋白质 private final int dianfen;…
我们在第三十二节,使用谷歌Object Detection API进行目标检测.训练新的模型(使用VOC 2012数据集)那一节我们介绍了如何使用谷歌Object Detection API进行目标检测,以及如何使用谷歌提供的目标检测模型训练自己的数据.在训练自己的数据集时,主要包括以下几步: 制作自己的数据集,注意这里数据集在进行标注时,需要按照一定的格式.然后调object_detection\dataset_tools下对应的脚本生成tfrecord文件.如下图,如果我们想调用create…
文字识别分为两个具体步骤:文字的检测和文字的识别,两者缺一不可,尤其是文字检测,是识别的前提条件,若文字都找不到,那何谈文字识别.今天我们首先来谈一下当今流行的文字检测技术有哪些. 文本检测不是一件简单的任务,尤其是复杂场景下的文本检测,非常具有挑战性.自然场景下的文本检测有如下几个难点: 文本存在多种分布,文本排布形式多样: 文本存在多个方向: 多种语言混合. 我们先从直观上理解文本检测任务.给定一张图片,我们需要找出这张图里文字出现的所有位置位置,那这个任务其实跟目标检测任务差别不大,即找出…
Euclidean distance map(EDM)这个概念可能听过的人也很少,其主要是用在二值图像中,作为一个很有效的中间处理手段存在.一般的处理都是将灰度图处理成二值图或者一个二值图处理成另外一个二值图,而EDM算法确是由一幅二值图生成一幅灰度图.其核心定义如下: The definition is simple enough: each point in the foreground is assigned a brightness value equal to its straight…
  2015年龚博士的曲率滤波算法刚出来的时候,在图像处理界也曾引起不小的轰动,特别是其所说的算法的简洁性,以及算法的效果.执行效率等方面较其他算法均有一定的优势,我在该算法刚出来时也曾经有关注,不过那个时候看到是迭代的算法,而且迭代的次数还蛮多了,就觉得算法应该不会太快,所以就放弃了对其进一步优化.最近,又偶尔一次碰触到该文章和代码,感觉还是有蛮大的优化空间的,所以抽空简单的实现他的算法.   该算法作者已经完全开源,项目地址见:https://github.com/YuanhaoGong/C…
基于局部拉普拉斯金字塔的Edge-aware滤波器是在2011年由Adobe 公司的研究员Sylvain Paris(大神级人物,写了很多文章)提出的,我在4年前曾经参考有关代码实现过这个算法,但是速度也是非常慢的,所以当时也没有继续做深入的研究,前段时间做另外一个算法时仔细的研究了下高斯和拉普拉斯金子塔的优化,因此又抽时间仔细的分析了算法的论文和代码,由于论文的理论部分还有一些我没有想清楚,因此在这里我只对研读过程中涉及的代码方面的优化做个解读. 经过我最终的优化,处理1920 * 1024的…
GIMP源代码链接:https://gitlab.gnome.org/GNOME/gimp/-/archive/master/gimp-master.zip GEGL相关代码链接:https://gitlab.gnome.org/GNOME/gegl/-/archive/master/gegl-master.zip 最近因为要研究下色温算法,顺便下载了最新的GIMP软件,色温算法倒是找到了(有空单独来讲下),也顺便看看GIMP都有些什么更新,嗯,更新还是蛮多的,界面UI上有很多改动,有些已经改的…
二值图像的细化算法也有很多种,比较有名的比如Hilditch细化.Rosenfeld细化.基于索引表的细化.还有Opencv自带的THINNING_ZHANGSUEN.THINNING_GUOHALL喜欢等等.这些都属于迭代的细化方式,当然还有一种是基于二值图像距离变换的细化方法,二值想比较,我个人认为是基于迭代的效果稳定.可靠,但是速度较慢,且速度和图片的内容有关,基于距离变换的版本,优点是速度稳定,但是效果差强人意.本文这里还是选择基于迭代的方式予以实现. 相关的参考文章有:http://c…
在SSE图像算法优化系列五:超高速指数模糊算法的实现和优化(10000*10000在100ms左右实现) 一文中,我曾经说过优化后的ExpBlur比BoxBlur还要快,那个时候我比较的BoxBlur算法是通过积分图+SSE实现的,我在09年另外一个博客账号上曾经提供过一篇这个文章彩色图像高速模糊之懒惰算法,里面也介绍了一种快速的图像模糊算法,这个算法的执行时间基本也是和半径无关的.在今年的SSE优化学习之路上我曾经也考虑过将该算法使用SSE实现,但当时觉得这个算法逐像素同时逐行都是前后依赖的(…