Dynamic Pooling and Unfolding Recursive Autoencoders for Paraphrase Detection 动态池和展开递归自动编码器的意译检测 论文地址 Richard Socher,Eric H. Huang, Jeffrey Pennington∗ , Andrew Y. Ng, Christopher D. Manning Computer Science Department, Stanford University, Stanford,…
论文标题:Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition 标题翻译:用于视觉识别的深度卷积神经网络中的空间金字塔池 论文作者:Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun 论文地址:https://arxiv.org/pdf/1406.4729.pdf SPP的GitHub地址:https://github.com/yueruc…
R-CNN论文翻译 Rich feature hierarchies for accurate object detection and semantic segmentation 用于精确物体定位和语义分割的丰富特征层次结构 2017-11-29 摘要         过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平.效果最好的方法是融合了多种图像低维特征和高维上下文环境的复杂结合系统.在这篇论文里,我们提出了一种简单并且可扩展的检测算法,可以将mAP在VOC2012最…
SSD英文论文翻译 SSD: Single Shot MultiBoxDetector 2017.12.08    摘要:我们提出了一种使用单个深层神经网络检测图像中对象的方法.我们的方法,名为SSD,将边界框的输出空间离散化为一组默认框,该默认框在每个特征图位置有不同的宽高比和尺寸.在预测期间,网络针对每个默认框中的每个存在对象类别生成分数,并且对框进行调整以更好地匹配对象形状.另外,网络组合来自具有不同分辨率的多个特征图的预测,以适应处理各种尺寸的对象.我们的SSD模型相对于需要region…
R-FCN论文翻译 R-FCN: Object Detection viaRegion-based Fully Convolutional Networks 2018.2.6   论文地址:R-FCN: Object Detection via Region-based Fully Convolutional Networks  代码地址:https://github.com/daijifeng001/r-fcn(matlab版) https://github.com/YuwenXiong/py…
论文标题:Faster R-CNN: Down the rabbit hole of modern object detection 论文作者:Zhi Tian , Weilin Huang, Tong He , Pan He , and Yu Qiao 论文地址:https://tryolabs.com/blog/2018/01/18/faster-r-cnn-down-the-rabbit-hole-of-modern-object-detection/ 论文地址:Object detect…
目录 深度可分离网络-Xception 注释 1. 摘要 2. 介绍 3. Inception假设 4. 卷积和分离卷积之间的联系 4. 先验工作 5. Xception 架构 6. 个人理解 单词汇总 深度可分离网络-Xception 注释 本系列<论文翻译>仅代表个人观点 目的提高英文阅读能力 错误之处较多,欢迎读者修正,在此感谢 1. 摘要   我们提出了一种关于inception的解释,其介于正常卷积网络和深度可分离卷积之间(先进行分离卷积然后进行点卷积).就此而论,深度可分离卷积可以…
R-CNN论文翻译 <Rich feature hierarchies for accurate object detection and semantic segmentation> 用于精确物体定位和语义分割的丰富特征层次结构 文章出处:https://www.cnblogs.com/pengsky2016/. 摘要:         过去几年,在权威数据集PASCAL上,物体检测的效果已经达到一个稳定水平.效果最好的方法是融合了多种图像低维特征和高维上下文环境的复杂结合系统.在这篇论文里…
SPPNet论文翻译 <Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition> Kaiming He 摘要:         当前深度卷积神经网络(CNNs)都需要输入的图像尺寸固定(比如224×224).这种人为的需要导致面对任意尺寸和比例的图像或子图像时降低识别的精度(因为要经过crop/warp).本文给网络配上一个叫做“空间金字塔池化”(spatial pyramid pooling,…
[论文翻译]NIN层论文中英对照翻译--(Network In Network) [开始时间]2018.09.27 [完成时间]2018.10.03 [论文翻译]NIN层论文中英对照翻译--(Network In Network) [中文译名] 网络中的网络 [论文链接]https://arxiv.org/abs/1312.4400 [补充] 1)NIN结构的caffe实现: 因为我们可以把全连接层当作为特殊的卷积层,所以呢, NIN在caffe中是非常 容易实现的: https://githu…