refinedet网络结构】的更多相关文章

refinedet只预测4个层,并且只有conv6_1.conv6_2,没有ssd中的conv7.8.9 refinedet的4个层都只有1个aspect ratio和1个min_size,所以每层每个点只有3个anchor,arm中做location的conv4_3_norm_mbox_loc等层都是3*4个channel,做confidence的conv4_3_norm_mbox_conf都是6个channel,因为这里变成了2分类,每个anchor必须要有negative和positive…
---恢复内容开始--- 一.创新点 针对two-stage的速度慢以及one-stage精度不足提出的方法,refinedet 包括三个核心部分:使用TCB来转换ARM的特征,送入ODM中进行检测: 两步级连回归:过滤较多的负样本(容易分类的,类似于ohem). (1)anchor refine module 和object detect module.前者类似于rpn,用于剔除过多的负样本和粗略调整anchor位置和尺寸(都是二分类):后者 将refine过的anchor进行进一步的微调(感…
论文链接:https://arxiv.org/abs/1711.06897 代码链接:https://github.com/sfzhang15/RefineDet 摘要 RefineDet是CVPR 2018的一篇论文,文中提出了一个新的single-shot检测器RefineDet,实现了比二阶段方法更高的准确率而且具有与一阶段方法相当的效率.RefineDet包括两个互连模型ARM(anchor refinement module)和ODM(object detection module):…
RefineDet 一.相关背景 中科院自动化所最新成果,CVPR 2018 <Single-Shot Refinement Neural Network for Object Detection> 在VOC2007测试集上,图像输入512*512时,map为81.8%,速度为24fps. 论文链接:https://arxiv.org/abs/1711.06897 二.主要思想 1.单阶段框架用于目标检测,由两个相互连接模块组成:ARM和ODM: 2.设计了TCB来传输ARM特征,来处理更具挑…
  Sparse Filtering 是一个用于提取特征的无监督学习算法,与通常特征学习算法试图建模训练数据的分布的做法不同,Sparse Filtering 直接对训练数据的特征分布进行分析,在所谓"好特征"的指导下构建目标函数来进行优化,其中只涉及一个可调参数.本文将主要讨论两个问题: (1)什么样的特征是好的特征: (2)如何利用好特征的条件来构造 Sparse Filtering 的目标函数. 目录链接 (一)网络结构与特征矩阵 (二)好特征的刻画 (三)目标函数的建立和求解…
Logistic回归.传统多层神经网络 1.1 线性回归.线性神经网络.Logistic/Softmax回归 线性回归是用于数据拟合的常规手段,其任务是优化目标函数:$h(\theta )=\theta+\theta_{1}x_{1}+\theta_{2}x_{2}+....\theta_{n}x_{n}$ 线性回归的求解法通常为两种: ①解优化多元一次方程(矩阵)的传统方法,在数值分析里通常被称作”最小二乘法",公式$\theta=(X^{T}X)^{-1}X^{T}Y$ ②迭代法:有一阶导数…
  去年 6 月份写的博文<Yusuke Sugomori 的 C 语言 Deep Learning 程序解读>是囫囵吞枣地读完一个关于 DBN 算法的开源代码后的笔记,当时对其中涉及的算法原理基本不懂.近日再次学习 RBM,觉得有必要将其整理成笔记,算是对那个代码的一个补充.  目录链接 (一)预备知识 (二)网络结构 (三)能量函数和概率分布 (四)对数似然函数 (五)梯度计算公式 (六)对比散度算法 (七)RBM 训练算法 (八)RBM 的评估 作者: peghoty 出处: http:…
原文链接:http://www.freezhongzi.info/?p=104 OpenWrt网络结构 OpenWrt的网络配置很丰富,在我看来几乎可以完成任何网络结构.下图为一个支持OpenWrt的路由器网络结构:这个路由器内部交换机有6个口,其中1个WAN口.4个LAN口.Port5默认连接内部网卡eth0,还有连接Wifi的无线网卡接eth2,eth3保留. 最让我惊奇的是OpenWrt网络的灵活性,它主要靠VLAN和(Bridging)网桥等实现. VLAN 一般路由器为节约成本只有一张…
https://www.zhihu.com/question/34681168 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?修改 CNN(卷积神经网络).RNN(循环神经网络).DNN(深度神经网络)的内部网络结构有什么区别?以及他们的主要用途是什么?只知道CNN是局部感受和参数共享,比较适合用于图像这方面.刚入门的小白真心   个人觉得CNN.RNN和DNN不能放在一起比较.DNN是一个大类,CNN是一个典型的空间上深度的神经网络,RNN是在…
神经网络结构在命名实体识别(NER)中的应用 近年来,基于神经网络的深度学习方法在自然语言处理领域已经取得了不少进展.作为NLP领域的基础任务-命名实体识别(Named Entity Recognition,NER)也不例外,神经网络结构在NER中也取得了不错的效果.最近,我也阅读学习了一系列使用神经网络结构进行NER的相关论文,在此进行一下总结,和大家一起分享学习. 1 引言 命名实体识别(Named Entity Recognition,NER)就是从一段自然语言文本中找出相关实体,并标注出…