LDA的一些资料】的更多相关文章

LDA-math-汇总 LDA数学八卦 http://www.52nlp.cn/lda-math-%E6%B1%87%E6%80%BB-lda%E6%95%B0%E5%AD%A6%E5%85%AB%E5%8D%A6…
1,线性判别分析(Linear Discriminant Analysis)(一) 2,机器学习中的数学(4)-线性判别分析(LDA), 主成分分析(PCA) 3,Machine Learning in Action – PCA和SVD 4,线性判别分析(Linear Discriminant Analysis, LDA)算法分析…
重要的是通过实践更深入地了解贝叶斯思想,先浅浅地了解下LDA. From: http://blog.csdn.net/huagong_adu/article/details/7937616/ 传统方法的缺陷: 传统判断两个文档相似性的方法是通过查看两个文档共同出现的单词的多少,如TF-IDF等,这种方法没有考虑到文字背后的语义关联,可能在两个文档共同出现的单词很少甚至没有,但两个文档是相似的. 在主题模型中,主题表示一个概念.一个方面,表现为一系列相关的单词,是这些单词的条件概率.形象来说,主题…
1.Blei的LDA代码(C):http://www.cs.princeton.edu/~blei/lda-c/index.html2.D.Bei的主页:http://www.cs.princeton.edu/~blei/publications.html3.Gibbs LDA++  by Xuan-Hieu Phan and Cam-Tu Nguyen(C++):http://gibbslda.sourceforge.net/4.用GibbsLDA做Topic Modeling (教程 by…
Reading Note : Parameter estimation for text analysis 暨LDA学习小结 原文:http://www.xperseverance.net/blogs/2013/03/1744/ 伟大的Parameter estimation for text analysis!当把这篇看的差不多的时候,也就到了LDA基础知识终结的时刻了,意味着LDA基础模型的基本了解完成了.所以对该模型的学习告一段落,下一阶段就是了解LDA无穷无尽的变种,不过那些不是很有用了…
重要的是通过实践更深入地了解贝叶斯思想,先浅浅地了解下LDA. 相关数学知识 LDA-math-MCMC 和 Gibbs Sampling LDA-math - 认识 Beta/Dirichlet 分布 LDA-math - 神奇的 Gamma 函数 LDA学习心得(一)——Gamma函数与Beta/Dirichlet分布 LDA学习心得(二)——文本建模 非常好!https://arxiv.org/pdf/1908.03142.pdf[LDA精讲] From: http://blog.csdn…
LDA 中文名叫 隐含狄利克雷分布 有一个讲的数学八卦的pdf,如下: http://pan.baidu.com/s/1bnX6Pgb Latent Dirichlet Allocation(LDA)模型是近年来提出的一种具有文本主题表示能力的非监督学习模型. 关键在于:将文档看做是一组主题的混合,词有分配到每个主题的概率. Probabilistic latent semantic analysis(PLSA) LDA可以看成是服 从贝叶斯分布的PLSA 这篇文章入门比较好:http://bl…
[https://zhuanlan.zhihu.com/p/30226687] LDA模型的前世今生 在文本挖掘中,有一项重要的工作就是分析和挖掘出文本中隐含的结构信息,而不依赖任何提前标注的信息.LDA(Latent Dirichlet Allocation)模型在过去十年里开启了一个主题模型领域. LDA 的论文作者是戴维·布雷(David Blei).吴恩达和迈克尔·乔丹(Michael Jordan).这三位都是今天机器学习界炙手可热的人物.论文最早发表在 2002 年的神经信息处理系统…
昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machine Learning (by Hastie, Tibshirani, and Friedman's ) 2.Elements of Statistical Learning(by Bishop's) 这两本是英文的,但是非常全,第一本需要有一定的数学基础,第可以先看第二本.如果看英文觉得吃力,推荐看一下下面…
最近在学深度学习相关的东西,在网上搜集到了一些不错的资料,现在汇总一下: Free Online Books  by Yoshua Bengio, Ian Goodfellow and Aaron Courville Neural Networks and Deep Learning42 by Michael Nielsen Deep Learning27 by Microsoft Research Deep Learning Tutorial23 by LISA lab, University…