定位、识别;目标检测,FasterRCNN】的更多相关文章

原有模型 1.下载fasrer-rcnn源代码并安装 git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git 1)  经常断的话,可以采取两步: git clone https://github.com/rbgirshick/py-faster-rcnn.git 2)  到py-faster-rcnn中,继续下载caffe-faster-rcnn,采取后台跑: git submodule update --in…
1.问题 解决方案:没编译好,需要在lib下编译make 需要在caffe-fast-rcnn下编译make或者make all -j16  ,还需要make pycaffe 2.问题 解决方案:/py-faster-rcnn/lib# make all -j16 3.问题 解决方案:下载faster_rcnn_models.tgz到py-faster-rcnn/data中 4.问题:faster rcnn运行demo,不显示图片是什么原因? 解决方案:远程访问打不出来界面 第二个savefig…
NO1.目标检测 (分类+定位) 目标检测(Object Detection)是图像分类的延伸,除了分类任务,还要给定多个检测目标的坐标位置.      NO2.目标检测的发展 R-CNN是最早基于CNN的目标检测方法,然后基于这条路线依次演进出了SPPnet,Fast R-CNN和Faster R-CNN,然后到2017年的Mask R-CNN.     R-CNN即区域卷积神经网络,其提出为目标检测领域提供了两个新的思路:首先提出将候选子图片输入CNN模型用于目标检测和分割的方法,其次提出了…
R-CNN全称为 Region-CNN,它是第一个成功地将深度学习应用到目标检测的算法,后续的改进算法 Fast R-CNN.Faster R-CNN都是基于该算法. 传统方法 VS R-CNN 传统的目标检测大多以图像识别为基础.一般是在图片上穷举出所有物体可能出现的区域框,然后对该区域框进行特征提取,运用图像识别方法进行分类,最后通过非极大值抑制输出结果. 传统方法最大的问题在特征提取部分,它基于经验驱动的人造特征范式,如haar.HOG.SIFT,并不能很好的表征样本. R-CNN思路大致…
定位: 针对分类利用softmax损失函数,针对定位利用L2损失函数(或L1.回归损失等) 人关节点检测 针对连续变量和离散变量需要采用不同种类的损失函数. 识别: 解决方案: 1.利用滑动窗口,框的大小和位置无法确定,目标检测需要巨大的计算量,pass 2.备选区域 利用区域选择网络ROI,将ROI处理成固定尺寸(与下游网络输入尺寸匹配),经过CNN后利用SVM分类(RCNN也会对输入的边界作补偿或修正) 基于区域选择网络也可以作为修正boundingbox的回归 RCNN的问题: Fast…
一. 算法背景 1. 机器视觉实际应用往往涉及包含多个物体的复杂场景,基于深度卷积神经网络的特征提取器,需要结合其他算法来准确定位多个目标,并进行识别. 2. 工业领域,目标检测算法在安防和质检系统都有广泛应用,前者可以检测出误入特定区域或穿戴不合规的人员:后者可以检测产品外观或表面缺陷. 二. yolo-v3与faster-rcnn 1. 架构 传统目标检测方法大致流程为:区域选择,特征提取,分类器分类. yolo-v3是one-stage算法,faster-rcnn是two-stage.简言…
在上一节.我们已经介绍了使用HOG和SVM实现目标检测和识别,这一节我们将介绍使用词袋模型BOW和SVM实现目标检测和识别. 一 词袋介绍 词袋模型(Bag-Of-Word)的概念最初不是针对计算机视觉的,但计算机视觉会使用该概念的升级.词袋最早出现在神经语言程序学(NLP)和信息检索(IR)领域,该模型忽略掉文本的语法和语序,用一组无序的单词来表达一段文字或者一个文档. 我们使用BOW在一系列文档中构建一个字典,然后使用字典中每个单词次数构成向量来表示每一个文档.比如: 文档1:I like…
其实在深度学习中我们已经介绍了目标检测和目标识别的概念.为了照顾一些没有学过深度学习的童鞋,这里我重新说明一次:目标检测是用来确定图像上某个区域是否有我们要识别的对象,目标识别是用来判断图片上这个对象是什么.识别通常只处理已经检测到对象的区域,例如,人们总是会在已有的人脸图像的区域去识别人脸. 传统的目标检测方法与识别不同于深度学习方法,后者主要利用神经网络来实现分类和回归问题.在这里我们主要介绍如何利用OpecnCV来实现传统目标检测和识别,在计算机视觉中有很多目标检测和识别的技术,这里我们主…
目标检测与识别是计算机视觉中最常见的挑战之一.属于高级主题. 本章节将扩展目标检测的概念,首先探讨人脸识别技术,然后将该技术应用到显示生活中的各种目标检测. 1 目标检测与识别技术 为了与OpenCV 学习笔记 05 人脸检测和识别进行区分:需重新说明一下什么是目标检测. 目标检测是一个程序,它用来确定图像的某个区域是否有要识别的对象,对象识别是程序识别对象的能力.识别通常只处理已检测到对象的区域.若人们总是会在有人脸图像的区域去识别人脸. 在计算机视觉中有很多目标检测和识别的技术,本章会用到:…
  Faster-rcnn实现目标检测 前言:本文浅谈目标检测的概念,发展过程以及RCNN系列的发展.为了实现基于Faster-RCNN算法的目标检测,初步了解了RCNN和Fast-RCNN实现目标检测的具体步骤及其优缺点.在深刻理解Faster-RCNN的基本原理.详细分析其结构后,开始进行对Faster-RCNN的训练.其训练过程包含对RPN网络的训练得到proposals和训练Faster-RCNN.整体过程思想是类似于迭代,但不需要迭代多次.最终得到了较好的实验结果,经分析可知,Fast…