pytorch实现BiLSTM+CRF用于NER(命名实体识别)在写这篇博客之前,我看了网上关于pytorch,BiLstm+CRF的实现,都是一个版本(对pytorch教程的翻译), 翻译得一点质量都没有,还有一些竟然说做得是词性标注,B,I,O是词性标注的tag吗?真是误人子弟.所以 自己打算写一篇关于pytorch上实现命名实体识别的翻译,加入自己的理解.前面是一些牢骚话 BiLSTM我上篇博客介绍了pytorch实现LSTM 链接,这里是BiLSTM,网络结构图如下 单向的LSTM,当前…
很久前做过一个命名实体识别的模块,现在有时间,记录一下. 一.要识别的对象 人名.地名.机构名 二.主要方法 1.使用CRF模型进行识别(识别对象都是最基础的序列,所以使用了好评率较高的序列识别算法CRF) 2.使用规则对相关数据进行后过滤. 三.具体实现 1.训练数据的生成 主要使用了人民日报免费部分,以及一些及它从网上找到的资源(时间长了,记不住了,好像还自己标注了些) 2.模板的生成    使用的是Unigram,由于考虑到要识别的实体一般情况下没有长距离依赖 以及训练时的效率问题,所以模…
follow: https://github.com/zjy-ucas/ChineseNER  这里边主要识别的实体如图所示,其实也就主要识别人名PER,机构ORG和地点LOC: B表示开始的字节,I表示中间的字节,E表示最后的字节,S表示该实体是单字节 例子:        实现架构: 1. 读取数据集,数据集共三个文件,训练集,交叉测试集和测试集,文件中每一行包含两个元素,字和标识.每一句话间由一个空格隔开                2. 处理数据集     1) 更新数据集中的标签,如…
pre = "0 0 B_SONG I_SONG I_SONG 0 B_SONG I_SONG I_SONG 0 0 B_SINGER I_SINGER I_SINGER 0 O O O B_ALBUM I_ALBUM I_ALBUM O O B_TAG I_TAG I_TAG O" true = "0 0 B_SONG I_SONG I_SONG 0 0 0 0 0 0 B_SINGER I_SINGER I_SINGER 0 O O O B_ALBUM I_ALBUM I…
CRF与NER简介   CRF,英文全称为conditional random field, 中文名为条件随机场,是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔可夫(Markov)随机场.   较为简单的条件随机场是定义在线性链上的条件随机场,称为线性链条件随机场(linear chain conditional random field). 线性链条件随机场可以用于序列标注等问题,而本文需要解决的命名实体识别(NER)任务正好可通过序列标注方…
自己也是一个初学者,主要是总结一下最近的学习,大佬见笑. 中文分词说到命名实体抽取,先要了解一下基于字标注的中文分词.比如一句话 "我爱北京天安门”. 分词的结果可以是 “我/爱/北京/天安门”. 那什么是基于字标注呢? “我/O 爱/O 北/B 京/E 天/B 安/M 门/E”. 就是这样,给每个字都进行一个标注.我们可以发现这句话中字的标注一共有四种.他们分别代表的意义如下. B | 词首M | 词中E | 词尾O | 单字 B表示一个词的开始,E表示一个词的结尾,M表示词中间的字.如果这个…
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param input: :return: ''' input_embeded = self.embedding(input) #[batch_size,seq_len,200] output,(h_n,c_n) = self.lstm(input_embeded) out = torch.cat(h_n[-1,:,:…
近几年来,基于神经网络的深度学习方法在计算机视觉.语音识别等领域取得了巨大成功,另外在自然语言处理领域也取得了不少进展.在NLP的关键性基础任务—命名实体识别(Named Entity Recognition,NER)的研究中,深度学习也获得了不错的效果. 开源地址:https://github.com/xiaosongshine/NLP_NER_RNN_Keras 目录 0.概念讲解 0.1 NER 简介 0.2 深度学习方法在NER中的应用 2.编程实战 2.1 概述 2.2数据预处理 2.…
声明:为了帮助初学者快速入门和上手,开始源学计划,即通过源代码进行学习.该计划收取少量费用,提供有质量保证的源码,以及详细的使用说明. 第一个项目是基于bert的命名实体识别(name entity recognition),pytorch实现 基于bert与语料模型在多个NLP任务上取的不错效果,包括在命名实体识别(name entity recognition)上,在bert之前,主要采用的模型是Bi-lstm + CRF的方式,取得了不错效果. Bert横空出世后,至今已经深度侵入到序列标…
一.任务 Named Entity Recognition,简称NER.主要用于提取时间.地点.人物.组织机构名. 二.应用 知识图谱.情感分析.机器翻译.对话问答系统都有应用.比如,需要利用命名实体识别技术自动识别用户的查询,然后将查询中的实体链接到知识图谱对应的结点上,其识别的准确率将会直接影响到后续的一系列工作. 三.流程图 四.标注集 采用BMEWO标注体系进行标注 BME分别代表实体的首部.中部.尾部.W代表单独是一个实体,O代表非实体. 五.NER的难点 1)不同场景不同领域下差异较…