CF 848E(动态规划+分治NTT)】的更多相关文章

传送门: http://codeforces.com/problemset/problem/848/E 题解: 假设0-n一定有一条边,我们得到了一个方案,那么显然是可以旋转得到其他方案的. 记最大的i满足i到i+n有一条边,那么旋转的方案数是n-i 考虑动态规划: 设\(g[i]\)表示i个点,只用相邻或隔一个去拼接的方案数. 转移显然有\(g[i]=g[i-2]+g[i-4]\). 设\(f[i][0/1][0/1]\)表示1有连对面的,n+1有连对面的,2-n填,前面后面是否要伸出去的方案…
[BZOJ3992]序列统计(动态规划,NTT) 题面 BZOJ 题解 最裸的暴力 设\(f[i][j]\)表示前\(i\)个数,积在膜意义下是\(j\)的方案数 转移的话,每次枚举一个数,直接丢进去就好 复杂度\(O(nm|S|)\),10pts #include<iostream> #include<cstdio> #include<cstdlib> #include<cstring> #include<cmath> #include<…
CF 528D. Fuzzy Search NTT 题目大意 给出文本串S和模式串T和k,S,T为DNA序列(只含ATGC).对于S中的每个位置\(i\),只要中[i-k,i+k]有一个位置匹配了字符\(i\),那么就认为\(i\)可以匹配.求S中有多少位置匹配了T. 思路 一共有四个字母,我们分别计算每个字母是否可行,其他不管. 最后四个都满足的位置就是一个合法位置(指的是初始位置). 设g[i]表示S_i位置是否是枚举的字母,f[i]表示M_i是否是是枚举的字母. 他们满足条件只需要右斜对角…
题面 戳这里,题意简单易懂. 题解 首先我们发现,操作是可以不考虑顺序的,因为每次操作会加一个 \(1\) ,每次进位会减少一个 \(1\) ,我们就可以考虑最后 \(1\) 的个数(也就是最后的和),以及成功操作次数,就行了. 然后根据期望的线性性,我们可以从低到高按位考虑贡献. 考虑一个递推:\(f(i, j)\) 表示从后往前第 \(i\) 位总共被改变 \(j\) 次的概率,那么有两种转移: 进位:\(\displaystyle f(i - 1, j) \to f(i, \lfloor…
考虑容斥,枚举一个子集S在1号猎人之后死.显然这个概率是w1/(Σwi+w1) (i∈S).于是我们统计出各种子集和的系数即可,造出一堆形如(-xwi+1)的生成函数,分治NTT卷起来就可以了. #include<iostream> #include<cstdio> #include<cmath> #include<cstdlib> #include<cstring> #include<algorithm> using namespa…
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=3456 Solution 这个问题可以考虑dp,利用补集思想 N个点的简单图总数量为$2^{\binom{N}{2}}$,要求的是简单联通图,所以可以用总量减不连通的. 不连通的可以通过枚举与某个固定点的联通的点的数量得到$tot=\sum _{i=1} ^{N} \binom{N-1}{i-1}*dp[i]*2^{\binom{N-i}{2}}$ 其中$dp[i]$表示的就是$i$个点的…
题目链接 CF960G 题解 同FJOI2016只不过数据范围变大了 考虑如何预处理第一类斯特林数 性质 \[x^{\overline{n}} = \sum\limits_{i = 0}^{n}\begin{bmatrix} n \\ i \end{bmatrix}x^{i}\] 分治\(NTT\)即可在\(O(nlog^2n)\)的时间内预处理出同一个\(n\)的所有\(\begin{bmatrix} n \\ i \end{bmatrix}\) 其实还有比较优美的倍增\(fft\)的\(O(…
题目链接 洛谷T30212 题解 式子很容易推出来,二项式定理展开后对于\(k\)的答案即可化简为如下: \[k!(\sum\limits_{i = 0}^{k} \frac{\sum\limits_{x = 1}^{n} a_x^{i}}{i!} \centerdot \frac{\sum\limits_{x = 1}^{n} b_x^{k - i}}{(k - i)!})\] 是一个卷积的形式 我们只需对所有\(k\)预处理出\(\sum\limits_{i = 1}^{n} a_i^{k}…
题目链接 loj2541 题解 思路很妙啊, 人傻想不到啊 觉得十分难求,考虑容斥 由于\(1\)号可能不是最后一个被杀的,我们容斥一下\(1\)号之后至少有几个没被杀 我们令\(A = \sum\limits_{i = 1}^{n} w_i\),令\(S\)表示选出那几个在\(i\)之后的\(w_i\)和 我们淘汰人之后概率的分母就改变了,很不好求 我们考虑转化一下问题,每个人被杀后依旧存在,只不过再次选中他时再选一次,是等价的 那么此时那几个人在\(1\)之后的概率 \[ \begin{al…
题目链接 hdu5279 题解 给出若干个完全图,然后完全图之间首尾相连并成环,要求删边使得两点之间路径数不超过\(1\),求方案数 容易想到各个完全图是独立的,每个完全图要删成一个森林,其实就是询问\(n\)个点有标号森林的个数 设\(f[i]\)表示\(i\)个点有标号森林的个数 枚举第一个点所在树大小,我们只需求出\(n\)个点有多少种树,由\(purfer\)序容易知道是\(n^{n - 2}\) 那么有 \[f[n] = \sum\limits_{i = 1}^{n} {n - 1 \…