OpenCV OpenGL手写字符识别】的更多相关文章

另外一篇文章地址:这个比较详细,但是程序略显简单,现在这个程序是比较复杂的 http://blog.csdn.net/wangyaninglm/article/details/17091901 整个项目下载地址: http://download.csdn.net/detail/wangyaninglm/8244549 实现效果: Finger.h #ifndef __TOUCHSCREEN_FINGER__ #define __TOUCHSCREEN_FINGER__ #include <cxc…
摘要 本程序主要参照论文,<基于OpenCV的脱机手写字符识别技术>实现了,对于手写阿拉伯数字的识别工作.识别工作分为三大步骤:预处理,特征提取,分类识别.预处理过程主要找到图像的ROI部分子图像并进行大小的归一化处理,特征提取将图像转化为特征向量,分类识别采用k-近邻分类方法进行分类处理,最后根据分类结果完成识别工作. 程序采用Microsoft Visual Studio 2010与OpenCV2.4.4在Windows 7-64位旗舰版系统下开发完成.并在Windows xp-32位系统…
转自http://blog.csdn.net/firefight/article/details/6452188 是MNIST手写数字图片库:http://code.google.com/p/supplement-of-the-mnist-database-of-handwritten-digits/downloads/list 其他方法:http://blog.csdn.net/onezeros/article/details/5672192 使用OPENCV训练手写数字识别分类器 1,下载训…
由于深度学习近期取得的进展,手写字符识别任务对一些主流语言来说已然不是什么难题了.但是对于一些训练样本较少的非主流语言来说,这仍是一个挑战性问题.为此,本文提出新模型TextCaps,它每类仅用200个训练样本就能达到和当前最佳水平媲美的结果. 由于深度学习模型近期取得的进展,对于许多主流语言来说,手写字符识别已经是得到解决的问题了.但对于其它语言而言,由于缺乏足够大的.用来训练深度学习模型的标注数据集,这仍然是一个极具挑战性的问题. 尽管 CNN 可以很好地理解图片中的低级和高级特征,但这样做…
参考了秋风细雨的文章:http://blog.csdn.net/candyforever/article/details/8564746 花了点时间编写出了程序,先看看效果吧. 识别效果大概都能正确. 好了,开始正题: 因为本程序是提取HOG特征,使用SVM进行分类的,所以大概了解下HOG的一些知识,其中我觉得怎么计算图像HOG特征的维度会对程序了解有帮助 关于HOG,我们可以参考: http://gz-ricky.blogbus.com/logs/85326280.html http://bl…
模式识别领域应用机器学习的场景非常多,手写识别就是其中一种,最简单的数字识别是一个多类分类问题,我们借这个多类分类问题来介绍一下google最新开源的tensorflow框架,后面深度学习的内容都会基于tensorflow来介绍和演示 请尊重原创,转载请注明来源网站www.shareditor.com以及原始链接地址 什么是tensorflow tensor意思是张量,flow是流. 张量原本是力学里的术语,表示弹性介质中各点应力状态.在数学中,张量表示的是一种广义的“数量”,0阶张量就是标量(…
本教程创建一个小的神经网络用于手写字符的识别.我们使用MNIST数据集进行训练和测试.这个数据集的训练集包含60000张来自500个人的手写字符的图像,测试集包含10000张独立于训练集的测试图像.你可以参看本教程的Ipython notebook. 本节中,我们使用CNN的模型助手来创建网络并初始化参数.首先import所需要的依赖库. %matplotlib inline from matplotlib import pyplot import numpy as np import os i…
标题介绍运行环境了win7 看网上好多keras识别minist 但是一般由于版本问题,无法直接用,,,这里还要特别感谢keras中文文档作者(三当家SCP).教程整的非常好.还有就是最好你在安装anaconda 之前把原来安装过的PY卸载掉,要不然安装mingw的时候会出问题,,,安装就不详细介绍了网上有很多种----大致流程——anaconda-mingw-theano(注意环境变量,系统变量啥的)-keras. 下边附上一个可用程序哈,亲测可用...并附上数据,数据来源于网络,见文章底部,…
# -*- coding:utf-8 -*- import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import os import argparse import sys DATA_DIR = os.path.join('.', 'mnist_link') # ======================================= # COMMON OPERATIONS #…
代码比较简单,没啥好说的,就做个记录而已.大致就是现建立graph,再通过session运行即可.需要注意的就是Variable要先初始化再使用. import tensorflow as tf from tensorflow.examples.tutorials.mnist import input_data import matplotlib.pyplot as plt # 把下载的MNIST数据集放到mnist_link目录下,用TF提供的接口解析数据集 MNIST = input_dat…