1. tf.add(x,  y, name) Args: x: A `Tensor`. Must be one of the following types: `bfloat16`, `half`, `float32`, `float64`, `uint8`, `int8`, `int16`, `int32`, `int64`, `complex64`, `complex128`, `string`. y: A `Tensor`. Must have the same type as `x`.…
tf.nn.bias_add(value,bias,data_format=None,name=None) 参数: value:一个Tensor,类型为float,double,int64,int32,uint8,int16,int8,complex64,或complex128. bias:一个 1-D Tensor,其大小与value的最后一个维度匹配:必须和value是相同的类型,除非value是量化类型,在这种情况下可以使用不同的量化类型. data_format:一个字符串,支持'NHW…
1. 使用tf.random_normal([2, 3], mean=-1, stddev=4) 创建一个正态分布的随机数 参数说明:[2, 3]表示随机数的维度,mean表示平均值,stddev表示标准差 代码:生成一个随机分布的值 #1. 创建一个正态分布的随机数 sess = tf.Session() x = tf.random_normal([2, 3], mean=-1, stddev=4) print(sess.run(x)) 2. np.random.shuffle(y) # 对数…
tf.add().tf.subtract().tf.multiply().tf.div()函数介绍和示例 1. tf.add() 释义:加法操作 示例: x = tf.constant(2, dtype=tf.float32, name=None) y = tf.constant(3, dtype=tf.float32, name=None) z = tf.add(x, y) # 加法操作 X = tf.constant([[1, 2, 3], [4, 5, 6]], dtype=tf.floa…
挺长的~超出估计值了~预计阅读时间20分钟. 从helloworld开始 mkdir 1.helloworld cd 1.helloworldvim helloworld.py 代码: # -*- coding: UTF-8 -*- # 引入 TensorFlow 库 import tensorflow as tf # 设置了gpu加速提示信息太多了,设置日志等级屏蔽一些 import os os.environ['TF_CPP_MIN_LOG_LEVEL']='3' # 创建一个常量 Oper…
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而言之,就是 tf.add(a, b) 与 a + b二者的区别,类似的也有,tf.assign 与 =(赋值运算符)的差异. 在计算精度上,二者并没有差别.运算符重载的形式a+b,会在内部转换为,a.__add__(b),而a.__add__(b)会再一次地映射为tf.add,在 math_ops.…
1. tf.add(a, b) 与 a+b 在神经网络前向传播的过程中,经常可见如下两种形式的代码: tf.add(tf.matmul(x, w), b) tf.matmul(x, w) + b 简而言之,就是 tf.add(a, b) 与 a + b二者的区别,类似的也有,tf.assign 与 =(赋值运算符)的差异. 在计算精度上,二者并没有差别.运算符重载的形式a+b,会在内部转换为,a.__add__(b),而a.__add__(b)会再一次地映射为tf.add,在 math_ops.…
tf.nn.bias_add bias_add( value, bias, data_format=None, name=None ) 功能说明: 将偏差项 bias 加到 value 上面,可以看做是 tf.add 的一个特例,其中 bias 必须是一维的,并且维度和 value 的最后一维相同,数据类型必须和 value 相同. 参数列表:     参数名 必选 类型 说明 value 是 张量 数据类型为 float, double, int64, int32, uint8, int16,…
转载http://blog.csdn.net/jerr__y/article/details/60877873 1. 首先看看比较简单的 tf.name_scope(‘scope_name’). tf.name_scope 主要结合 tf.Variable() 来使用,方便参数命名管理. ''' Signature: tf.name_scope(*args, **kwds) Docstring: Returns a context manager for use when defining a…
函数原型: tf.assign(ref, value, validate_shape=None, use_locking=None, name=None)   Defined in tensorflow/python/ops/state_ops.py.   将 value 赋值给 ref,并输出 ref,即 ref = value:   这使得需要使用复位值的连续操作变简单   Defined in tensorflow/python/framework/tensor_shape.py. Arg…