Influence maximization on big social graph Fanju PPT链接: social influence booming of online social network 一, Application:viral marketing 1, identify influence customers: seeds. 2, convince them to adopter product. other application: Rumor monitoring…
Robust Influence Maximization 首先简要介绍一下这个问题:在一个社交网络图中寻找固定数量的节点,使得这些节点对所有节点的影响值尽可能的大.先对这个问题给出形式化的定义:给一个有向图G = (V,E) ,V代表节点,E代表有向边,每一条边有一个权值  ∈ [0,1],代表源点对终点的影响因子(源点有多大的几率对终点产生影响).定义参数向量θ=( ) e∈E 代表每一条边上的影响因子.我们定义 (S)为影响传播函数,( (S)代表从S出发能传播到的所有节点数目的期望值)…
一.   研究背景 在社会和经济网络中,影响最大化问题在过去十年中得到广泛的研究,由于其广泛应用于病毒式营销[1,2],突破检测[3],谣言监测[4]等.例如公司可以通过向初始用户(称为种子)发送免费样品,并通过口碑(World of Mouth)效应,在社交网络中进行宣传活动,越来越多的用户受到社会关系的影响加入宣传活动,宣传促销活动.这个问题首先由Kempe等人提出[5],他们提出了独立的级联模型和线性阈值模型,考虑信息扩散的社会心理因素来模拟这种随机的收养过程.他们给出了influence…
目录 一.摘言 二.杂记 三.问题定义和一些准备工作 四.模型真思想 五.实验部分 六.参考文献 一.摘言 之前协同过滤利用user-item交互历史很好的表示了user和item.但是由于用户行为的稀疏性,效果提升有限. 随着社交网络的发展,social recommendation system被提出,利用user的周围邻居的偏好来减轻用户稀疏性,从而得到更好嵌入表示模型. 然而现在的社交网络推荐模型都是简单的利用周围邻居提出静态模型,而没有模拟信息在全局的循环传播过程,这很可能会提升推荐性…
Robust Influence Maximization 首先简要介绍一下这个问题:在一个社交网络图中寻找固定数量的节点,使得这些节点对所有节点的影响值尽可能的大.这个问题由于在病毒式营销,谣言监控,舆情分析等活动之中有巨大的应用,所以在过去的几十年,已经被广泛的研究过了.举个例子:一家化妆品公司想要通过送给一些用户免费产品的形式来推广产品,这些用户如何选择就可以采用解决Influence maximization问题的思路来进行.这个问题首先是被Kempe首先提出来的,他提出了两种模型来解决…
论文信息 论文标题:Rumor Detection with Self-supervised Learning on Texts and Social Graph论文作者:Yuan Gao, Xiang Wang, Xiangnan He, Huamin Feng, Yongdong Zhang论文来源:2202,arXiv论文地址:download 论文代码:download 1 Introduction 出发点:考虑异构信息: 本文的贡献描述:看看就行....................…
Social Role-Aware Emotion Contagion in Image Social Networks 社会角色意识情绪在形象社交网络中的传染 1.摘要: 心理学理论认为,情绪代表了一个人的认知系统(1927年)的精神状态和本能反应. 情绪是一种复杂的情绪状态,它会导致影响我们行为的生理和心理变化. 本文研究了社交网络中情绪感染的一个有趣问题. 特别地,通过使用图像社交网络(Flickr)作为我们研究的基础,我们试图揭示用户的情绪状态如何影响彼此,以及用户在社交网络中的位置如何…
My name is Charles Humble and I am here at QCon New York 2014 with Ian Robinson. Ian, can you introduce yourself to the InfoQ community? Hello, I am Ian Robinson, I am engineer at Neo Technology, I am based in London and I work on the Neo4j graph dat…
论文信息 论文标题:Divide-and-Conquer: Post-User Interaction Network for Fake News Detection on Social Media论文作者:Erxue Min, Yu Rong, Yatao Bian, Tingyang Xu, Peilin Zhao, Junzhou Huang,Sophia Ananiadou论文来源:2022,WWW 论文地址:download 论文代码:download Background 挑战: (…
论文信息 论文标题:DUCK: Rumour Detection on Social Media by Modelling User and Comment Propagation Networks论文作者:Lin Tian, Xiuzhen Zhang, Jey Han Lau论文来源:2022,NAACL论文地址:download 论文代码:download 1 Introduction 本文的模型研究了如何充分利用用户和评论信息,对比之前的方法,有以下不同: (1) we model co…