nanonets】的更多相关文章

https://app.nanonets.com/ List of Models IMAGES   Images: Image Categorization Beta Input: Image Output: Category To Start: Upload 25 Images/Category Get Started Image Localization Beta Input: Image Output: Box To Start: Upload 100 Bounding Boxes Get…
前言 在深度学习的应用过程中,数据的重要性不言而喻.继上篇介绍了数据合成(个人认为其在某种程度上可被看成一种数据增强方法)这个主题后,本篇聚焦于数据增强来介绍几篇杰作! (1)NanoNets : How to use Deep Learning when you have Limited Data (2)Data Augmentation | How to use Deep Learning when you have Limited Data—Part 2 网上也已经有了上述文章的翻译,推荐…
列举常见的几种数据集增强方法: 1.flip  翻折(左右,上下) # NumPy.'img' = A single image. flip_1 = np.fliplr(img) # TensorFlow. 'x' = A placeholder for an image. shape = [height, width, channels] x = tf.placeholder(dtype = tf.float32, shape = shape) flip_2 = tf.image.flip_u…
开始之前,需要思考一些基本问题 1.为什么需要大量数据 当您训练机器学习模型时,您真正在做的是调整其参数,以便它可以将特定输入(例如,图像)映射到某个输出(标签).我们的优化目标是追逐我们模型损失较低的最佳位置,这种情况发生在您的参数以正确的方式调整时. 现在的神经网络通常具有数百万的参数,因此,你需要向您的机器学习模型喂入一定比例的示例,以获得良好的性能.此外,您需要的参数数量与模型送执行的任务的复杂程度成正比. 2.如果我没有“更多数据”,如何获得更多数据?     您无需寻找可添加到数据集…
https://medium.com/nanonets/how-to-easily-detect-objects-with-deep-learning-on-raspberrypi-225f29635c74 https://haoyu.love/blog511.html https://zhuanlan.zhihu.com/p/56795409…
从DeepNet到HRNet,这有一份深度学习"人体姿势估计"全指南 几十年来,人体姿态估计(Human Pose estimation)在计算机视觉界备受关注.它是理解图像和视频中人物行为的关键一步. 在近年深度学习兴起后,人体姿态估计领域也发生了翻天覆地的变化. 今天,文摘菌就从深度学习+二维人体姿态估计的开山之作DeepPose开始讲起,为大家盘点近几年这一领域的最重要的论文. 什么是人体姿势估计? 人体姿态估计(Human Pose Estimation,以下简称为HPE)被定…