最近在工作中要处理好多文本文档,要求找出和每个文档的相识的文档.通过查找资料总结如下几个计算方法: 1.余弦相似性 我举一个例子来说明,什么是"余弦相似性". 为了简单起见,我们先从句子着手. 请问怎样才能计算上面两句话的相似程度? 基本思路是:如果这两句话的用词越相似,它们的内容就应该越相似.因此,可以从词频入手,计算它们的相似程度. 第一步,分词. 第二步,列出所有的词. 第三步,计算词频. 第四步,写出词频向量. 到这里,问题就变成了如何计算这两个向量的相似程度. 我们可以把它们…
给定N个集合,从中找到相似的集合对,如何实现呢?直观的方法是比较任意两个集合.那么可以十分精确的找到每一对相似的集合,但是时间复杂度是O(n2).此外,假如,N个集合中只有少数几对集合相似,绝大多数集合都不相似,该方法在两两比较过程中"浪费了计算时间".所以,如果能找到一种算法,将大体上相似的集合聚到一起,缩小比对的范围,这样只用检测较少的集合对,就可以找到绝大多数相似的集合对,大幅度减少时间开销.虽然牺牲了一部分精度,但是如果能够将时间大幅度减少,这种算法还是可以接受的.接下来的内容…
利用sklearn计算文本相似性,并将文本之间的相似度矩阵保存到文件当中.这里提取文本TF-IDF特征值进行文本的相似性计算. #!/usr/bin/python # -*- coding: utf-8 -*- import numpy import os import sys from sklearn import feature_extraction from sklearn.feature_extraction.text import TfidfTransformer from sklea…
Solr In Action 笔记(2) 之评分机制(相似性计算) 1 简述 我们对搜索引擎进行查询时候,很少会有人进行翻页操作.这就要求我们对索引的内容提取具有高度的匹配性,这就搜索引擎文档的相似性计算,如何准确的选出最符合查询条件的文档. <这就是搜索引擎>里面对相似性计算进行了简单的介绍. 内容的相似性计算由搜索引擎的检索模型建模,它是搜索引擎的理论基础,为量化相关性提供了一种数学模型,否则没法计算.当然检索模型理论研究存在理想化的隐含假设,即假设用户需求已经通过查询非常清晰明确地表达出…
0. 写在前面 节后第一篇,疫情还没结束,黎明前的黑暗,中国加油,武汉加油,看了很多报道,发现只有中国人才会帮助中国人,谁说中国人一盘散沙?也许是年龄大了,看到全国各地的医务人员源源不断的告别家人去支援湖北,看到医务人员.肺炎病人的故事,总会忍不住落泪,中国加油,中国人加油! 1. 场景描述 背景不写了,只谈技术,做的是文本相似性统计,因需要从文本描述性信息中分析同类信息,以便后续重点关注,数据量比较大,大概20多万,人工效率低,需要算法来实现. 根据需求要从不同维度进行统计: (1)分组不分句…
小样本利器2.文本对抗+半监督 FGSM & VAT & FGM代码实现 上一章我们聊了聊通过一致性正则的半监督方案,使用大量的未标注样本来提升小样本模型的泛化能力.这一章我们结合FGSM,FGM,VAT看下如何使用对抗训练,以及对抗训练结合半监督来提升模型的鲁棒性.本章我们会混着CV和NLP一起来说,VAT的两篇是CV领域的论文,而FGM是CV迁移到NLP的实现方案,一作都是同一位作者大大.FGM的tensorflow实现详见Github-SimpleClassification 我们会…
计算KS值的标准代码 from scipy.stats import ks_2samp get_ks = lambda y_pred,y_true: ks_2samp(y_pred[y_true==1], y_pred[y_true!=1]).statistic get_ks(x,y)…
A:西米喜欢健身 B:超超不爱健身,喜欢打游戏 step1:分词 A:西米/喜欢/健身 B:超超/不/喜欢/健身,喜欢/打/游戏 step2:列出两个句子的并集 西米/喜欢/健身/超超/不/打/游戏 step3:计算词频向量 A:[1,1,1,0,0,0,0] B:[0,1,1,1,1,1,1] step4:计算余弦值 余弦值越大,证明夹角越小,两个向量越相似. step5:python代码实现 import jieba import jieba.analyse def words2vec(wo…
Opencv支持GPU计算,并且包含成一个gpu类用来方便调用,所以不需要去加上什么__global__什么的很方便,不过同时这个类还是有不足的,待opencv小组的更新和完善. 这里先介绍在之前的<opencv4-highgui之视频的输入和输出以及滚动条>未介绍的图像的相似性检测,当然这是cpu版本,然后接着在介绍对应的gpu版本.这里只介绍了PSNR和SSIM两种用来进行对比图像的方法 原理: PSNR: 当我们想检查压缩视频带来的细微差异的时候,就需要构建一个能够逐帧比较差视频差异的系…
比较两个文本的相似度 这里采用 simHash 算法 ; 分词是 基于 http://hanlp.linrunsoft.com/ 的开源 中文分词包 来实现分词 ; 实现效果图: 直接上源码: https://pan.baidu.com/s/1hr4ymKs kbih…