cs231n(一)】的更多相关文章

cs231n线性分类器学习笔记,非完全翻译,根据自己的学习情况总结出的内容: 线性分类 本节介绍线性分类器,该方法可以自然延伸到神经网络和卷积神经网络中,这类方法主要有两部分组成,一个是评分函数(score function):是原始数据和类别分值的映射,另一个是损失函数:它是用来衡量预测标签和真是标签的一致性程度.我们将这类问题转化为优化问题,通过修改参数来最小化损失函数. 首先定义一个评分函数,这个函数将输入样本映射为各个分类类别的得分,得分的高低代表该样本属于该类别可能性的高低.现在假设有…
本博客内容来自 Stanford University CS231N 2017 Lecture 2 - Image Classification 课程官网:http://cs231n.stanford.edu/syllabus.html 从课程官网可以查询到更详细的信息,查看视频需要FQ上YouTube,如果不能FQ或觉得比较麻烦,也可以从我给出的百度云链接中下载. 课程视频&讲义下载:http://pan.baidu.com/s/1gfu51KJ 问题背景 现在我有一张关于猫的图片,如何让计算…
CNN介绍 与之前的神经网络不同之处在于,CNN明确指定了输入就是图像,这允许我们将某些特征编码到CNN的结构中去,不仅易于实现,还能极大减少网络的参数. 一. 结构概述 与一般的神经网络不同,卷积神经网络尤其特殊之处.一般的神经网络每一层与前一层之间采用全连接:一层中的神经元之间也是互相独立的,并不共享权值:最后一层全连接层陈伟输出层,在分类任务中出表示类别得分.CIFAR-10中图像是32*32*3=3072,所以,与输入相连的第一个隐层的每个神经元的参数都有3072个,如果图像尺寸更大,那…
cs231n:线性svm与softmax 参数信息: 权重 W:(D,C) 训练集 X:(N,D),标签 y:(N,1) 偏置量bias b:(C,1) N:训练样本数:  D:样本Xi 的特征维度,Xi = [ Xi1,Xi2,...,XiD]: C:类别数量 正则化系数 λ :控制正则化的强度 delta / Δ : 间隔 linear svm: 对训练样本(Xi,yi),其对应每个类别的得分为: score = W*Xi+ b 是长度为C的矢量,以s表示 score, s = [s1, s…
本文使根据CS231n的讲义整理而成(http://cs231n.github.io/python-numpy-tutorial/),以下内容基于Python3. 1. 基本数据类型:可以用 print(type(x)) 查看类型 1)整数.浮点数: 幂:x**y等价于pow(x, y): 不支持 x++.x--,支持 x+=1: /是浮点除法,//是整除,3//2 = 1: %取余: 2)布尔: 与(and,&).或(or,|).非(not),不要使用&&.||之类的. 3)字符…
一.问题描述 网上绝大多数作业参考都是在jupyter下运行的,数据集载入过程一般如下: from cs231n.data_utils import load_CIFAR10 #导入数据集,并打印出数据集相关参数以确定是否加载成功 cifar10_dir = 'cs231n/datasets/cifar-10-batches-py' #数据集地址(获取数据集的脚本) #删除以前可能导入的数据,若之前未导入数据,则直接pass #try...except...为解决异常的语句,参见https://…
日志 20170410 Coursera机器学习 2017.11.28 update deeplearning 台大的机器学习课程:台湾大学林轩田和李宏毅机器学习课程 Coursera机器学习 Week 5: Neural Networks: Learning 本来上周开始该学习这个内容,也是先提交了作业,今天才来看看具体的代码:感觉这个课程本身对基础巩固很好.没有连续学习感觉有些有点忘了,最终的目的是自己能够推导这个内容. 本来想跟着学习搞个电子证书的,结果申请的到期时间是2017.3.31;…
回顾上一节中,介绍了图像分类任务中的两个要点: 假设函数.该函数将原始图像像素映射为分类评分值. 损失函数.该函数根据分类评分和训练集图像数据实际分类的一致性,衡量某个具体参数集的质量好坏. 现在介绍第三个要点,也是最后一个关键部分:最优化Optimization.最优化是寻找能使得损失函数值最小化的参数 W 的过程,一旦理解了这三个部分是如何相互运作的,我们将会回到第一个要点,然后将其拓展为一个远比线性函数复杂的函数:首先是神经网络,然后是卷积神经网络.而损失函数和最优化过程这两个部分将会保持…
Liner classifier 线性分类器用作图像分类主要有两部分组成:一个是假设函数, 它是原始图像数据到类别的映射.另一个是损失函数,该方法可转化为一个最优化问题,在最优化过程中,将通过更新假设函数的参数值来最小化损失函数值. 从图像到标签分值的参数化映射:该方法的第一部分就是定义一个评分函数,这个函数将图像的像素值映射为各个分类类别的得分,得分高低代表图像属于该类别的可能性高低.下面会利用一个具体例子来展示该方法.现在假设有一个包含很多图像的训练集 $x_i \in \mathbb{R}…
cs231n的第18课理解起来很吃力,听后又查了一些资料才算是勉强弄懂,所以这里贴一篇博文(根据自己理解有所修改)和原论文的翻译加深加深理解,其中原论文翻译比博文更容易理解,但是太长,而博文是业者而非学者所著,看着也更舒服一点. 另,本文涉及了反向传播的backpropagation算法,知乎上有个回答很不错,备份到文章里了,为支持原作者,这里给出知乎原文连接 可视化理解卷积神经网络 这张PPT是本节课的核心,下面我来说说这张图. 可视化神经网络的思想就是构建一个逆向的卷积神经网络,但是不包括训…