传送门 概率dp经典题. 如果当前位置(i,j)(i,j)(i,j)有钉子,那么掉到(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)(i+1,j),(i+1,j+1)的概率都是1/2. 而如果没有钉子,那么掉到(i+2,j+1)(i+2,j+1)(i+2,j+1)的概率是1. 这样转移就行了. 另外注意读入字符要用cin. 代码: #include<bits/stdc++.h> #define ll long long using namespace std; ll n,m…
一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstdlib> #include<cstdio> #include<algorithm> #define ll long long using namespace std; ,inf=1e9; ,ll b=){u=a,d=b;}}f[maxn][maxn]; int n,m; bool…
http://www.lydsy.com/JudgeOnline/problem.php?id=1867 dp[i][j] 落到(i,j)的方案数 dp[i][j]=0.5*dp[i-1][j]   [(i-1,j)位置有钉子] + 0.5*dp[i-1][j-1]    [(i-1.j-1)位置有钉子] + dp[i-1][j-2]    [(i-1,j-2)位置没有钉子] #include<cstdio> #include<iostream> using namespace s…
Description Input 第1行为整数n(2<=n<=50)和m(0<=m<=n).以下n行依次为木板上从上至下n行钉子的信息,每行中‘*’表示钉子还在,‘.’表示钉子被拔去,注意在这n行中空格符可能出现在任何位置. Output 仅一行,是一个既约分数(0写成0/1),为小球落在编号为m的格子中的概pm.既约分数的定义:A/B是既约分数,当且仅当A.B为正整数且A和B没有大于1的公因子. Sample Input 5 2 Sample Output 7/16   Sol…
设f[i][j]为掉到f[i][j]时的概率然后分情况随便转移一下就好 主要是要手写分数比较麻烦 #include<iostream> #include<cstdio> using namespace std; const int N=55; int n,m; char a[N][N]; long long gcd(long long a,long long b) { return !b?a:gcd(b,a%b); } struct fs { long long x,y; fs(l…
题目描述 Description 有一个三角形木板,竖直立放,上面钉着n(n+1)/2颗钉子,还有(n+1)个格子(当n=5时如图1).每颗钉子和周围的钉子的距离都等于d,每个格子的宽度也都等于d,且除了最左端和最右端的格子外每个格子都正对着最下面一排钉子的间隙. 让一个直径略小于d的小球中心正对着最上面的钉子在板上自由滚落,小球每碰到一个钉子都可能落向左边或右边(概率各1/2),且球的中心还会正对着下一颗将要碰上的钉子.例如图2就是小球一条可能的路径. 我们知道小球落在第i个格子中的概率pi=…
想状态和钉子的位置如何匹配想了半天...后来发现不是一样的吗$qwq$ 思路:当然是$DP$啦 提交:>5次(以为无故$RE$,实则是先乘后除爆了$long\space long$) 题解: 若有钉子,左右各乘$\frac{1}{2}$转移,否则,向下两层直接转移. 对于分数,分别维护分子和分母,然后加起来的时候,记着一定要写成 up[i][j]=up[i][j]*(b/G)+a*(dn[i][j]/G); dn[i][j]=dn[i][j]*(b/G); 而非 up[i][j]=up[i][j…
传送门 答案只保留了6位小数WA了两次233. 这就是一个简单的01分数规划. 直接二分答案,根据图中有没有负环存在进行调整. 注意二分边界. 另外dfs版spfa判负环真心快很多. 代码: #include<bits/stdc++.h> #define N 3005 #define M 10005 using namespace std; inline int read(){ int ans=0; char ch=getchar(); while(!isdigit(ch))ch=getcha…
传送门 正解是并查集+矩阵树定理. 但由于数据范围小搜索也可以过. 我们需要知道最小生成树的两个性质: 不同的最小生成树中,每种权值的边出现的个数是确定的 不同的生成树中,某一种权值的边连接完成后,形成的连通块状态是一样的 那么可以根据乘法原理按权值分步,将每一步得到的结果相乘. 每次分步的计算可以用搜索/矩阵树定理来实现. 代码: #include<bits/stdc++.h> #define mod 31011 #define N 15 #define M 1005 using names…
传送门 简单二分答案. 我们二分最终有k个牌堆. 这样joker被选择的张数≤min(k,m)\le min(k,m)≤min(k,m) 并且joker需要被选择的张数应该是∑i−1nmax(0,k−c[i])\sum _{i-1} ^n max(0,k-c[i])∑i−1n​max(0,k−c[i]) 代码: #include<bits/stdc++.h> using namespace std; int n,m,ans,c[55],l,r; inline bool check(int x,…