C++ 的 STL 库的 <numeric> 头文件的 partial_sum 函数已实现了对某一序列的 partial sum. partial_sum(first, last, dest); 1. 部分和的引入 并非什么高级深奥的技巧,但却十分有用. 假设按照降序排列 N 个学生的考试成绩并保存到数组 scores[],现在想要编写求出从第 a 名到第 b 名成绩的函数 average(a, b),最简单的方法是,将 scores[a] 到 scores[b] 的乘积全部相加,然后除以 b…
本质上算法都是对数据的操作,没有数据,没有存储数据的容器和组织方式,算法就是无源之水无本之木,就是巧妇也难为无米之炊.算法是演员,变量.数组.容器等就是舞台, 然后整个算法的处理流程,都是针对这些数据(存储在变量或者 STL 中的容器中)进行初始化,修改,更新的,算法的结束也是对这些数据进行判断:(算法实现过程中的数据,相当于面向对象编程中的成员变量),数据居于中心位置: 1. 旅行商问题 结点(城市)间的邻接关系与权重 ⇒ 邻接矩阵 int dst[100][100];(二维数组,如果没有更复…
1. 分治.动态规划的局限性 没有合适的分割方式时,就不能使用分治法: 没有合适的子问题或占用内存空间太大时,就不能用动态规划: 此时还需要回到最基本的穷举搜索算法. 穷举搜索(exhaustive search)会把生成答案的过程分为几个选择的过程,之后利用递归调用完成各个选择项,由此实现其目的.此时,所有子问题的答案和已完成答案的集合就是搜索空间(search space).例如旅行商(TSP)问题,已访问过的各个城市的目录和当前位置就构成了搜索空间的 1 个元素. 但对穷举搜索而言,即使问…
精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合呢?我们采用回溯法 矩阵1: 先假定选择第1行,如下所示: 如上图中所示,红色的那行是选中的一行,这一行中有3个1,分别是第3.5.6列. 由于这3列已经包含了1,故,把这三列往下标示,图中的蓝色部分.蓝色部分包含3个1,分别在2行中,把这2行用紫色标示出来 根据定义,同一列的1只能有1个,故紫色的…
隐马尔科夫模型HMM(一)HMM模型 隐马尔科夫模型HMM(二)前向后向算法评估观察序列概率 隐马尔科夫模型HMM(三)鲍姆-韦尔奇算法求解HMM参数(TODO) 隐马尔科夫模型HMM(四)维特比算法解码隐藏状态序列(TODO) 在本篇我们会讨论HMM模型参数求解的问题,这个问题在HMM三个问题里算是最复杂的.在研究这个问题之前,建议先阅读这个系列的前两篇以熟悉HMM模型和HMM的前向后向算法,以及EM算法原理总结,这些在本篇里会用到.在李航的<统计学习方法>中,这个算法的讲解只考虑了单个观测…
注:本文是对<统计学习方法>EM算法的一个简单总结. 1. 什么是EM算法? 引用书上的话: 概率模型有时既含有观测变量,又含有隐变量或者潜在变量.如果概率模型的变量都是观测变量,可以直接使用极大似然估计法或者贝叶斯的方法进行估计模型参数,但是当模型含有隐藏变量时,就不能简单使用这些方法了.EM算法就是含有隐变量的概率模型参数的极大似然估计法,或者极大似然后验概率估计法. 2. EM 算法的一个小例子:三硬币模型 假设有3枚硬币,记作A,B,C.这些硬币的正面出现的概率分别为\(\pi\).\…
题目链接: https://cn.vjudge.net/problem/HDU-3613 After an uphill battle, General Li won a great victory. Now the head of state decide to reward him with honor and treasures for his great exploit. One of these treasures is a necklace made up of 26 differe…
出处:http://www.cnblogs.com/grenet/p/3145800.html 精确覆盖问题的定义:给定一个由0-1组成的矩阵,是否能找到一个行的集合,使得集合中每一列都恰好包含一个1 例如:如下的矩阵 就包含了这样一个集合(第1.4.5行) 如何利用给定的矩阵求出相应的行的集合呢?我们采用回溯法 矩阵1: 先假定选择第1行,如下所示: 如上图中所示,红色的那行是选中的一行,这一行中有3个1,分别是第3.5.6列. 由于这3列已经包含了1,故,把这三列往下标示,图中的蓝色部分.蓝…
Bellman-Ford算法与另一个非常著名的Dijkstra算法一样,用于求解单源点最短路径问题.Bellman-ford算法除了可求解边权均非负的问题外,还可以解决存在负权边的问题(意义是什么,好好思考),而Dijkstra算法只能处理边权非负的问题,因此 Bellman-Ford算法的适用面要广泛一些.但是,原始的Bellman-Ford算法时间复杂度为O(VE),比Dijkstra算法的时间复杂度高,所以常常被众多的大学算法教科书所忽略,就连经典的<算法导论>也只介绍了基本的Bellm…
一.TSP问题 TSP问题(Travelling Salesman Problem)即旅行商问题,又译为旅行推销员问题.货郎担问题,是数学领域中著名问题之一.假设有一个旅行商人要拜访n个城市,他必须选择所要走的路径,路径的限制是每个城市只能拜访一次,而且最后要回到原来出发的城市.路径的选择目标是要求得的路径路程为所有路径之中的最小值. TSP问题是一个组合优化问题.该问题可以被证明具有NPC计算复杂性.TSP问题可以分为两类,一类是对称TSP问题(Symmetric TSP),另一类是非对称问题…