P(X,Y)=P(X)P(Y),X⊥Y P(X,Y,Z)∝ϕ1(X,Z)ϕ2(Y,Z),(X⊥Y∣∣Z) 1. Reasoning patterns causal reasoning 由原因到结果的一种自然推理(P(I1∣∣i0,d0)): evidential reasoning 一种由结果到原因的反向推理(P(d1∣∣g3),P(i1∣∣g3)), intercasual reasoning "intercasual reasoning" 探讨的是两个没有直接箭头的结点之间的推理,…
2 - 1 - Semantics & Factorization 2 - 2 - Reasoning Patterns 2 - 3 - Flow of Probabilistic Influence 2 - 4 - Conditional Independence 2 - 5 - Independencies in Bayesian Networks 2 - 6 - Naive Bayes 2 - 7 - Application Medical Diagnosis 2 - 8 - Knowle…
[十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 朴素贝叶斯(Naïve Bayes)属于无监督学习的一种,实现简单,没有迭代,学习效率高,在大样本量下会有较好的表现.但因为假设太强--假设特征条件独立,在输入向量的特征条件有关联的场景下并不适用. 1. 朴素贝叶斯算法 朴素贝叶斯分类器的主要思路:通过联合概率\(P(x,y) = P(x|y) P(y)\)建模,运用贝叶斯定理求解后…
生活中很多场合需要用到分类,比如新闻分类.病人分类等等. 本文介绍朴素贝叶斯分类器(Naive Bayes classifier),它是一种简单有效的常用分类算法. 一.病人分类的例子 让我从一个例子开始讲起,你会看到贝叶斯分类器很好懂,一点都不难. 某个医院早上收了六个门诊病人,如下表. 症状 职业 疾病 打喷嚏 护士 感冒  打喷嚏 农夫 过敏  头痛 建筑工人 脑震荡  头痛 建筑工人 感冒  打喷嚏 教师 感冒  头痛 教师 脑震荡 现在又来了第七个病人,是一个打喷嚏的建筑工人.请问他患…
1.前言: Naive Bayes(朴素贝叶斯)是一个简单的多类分类算法,该算法的前提是假设各特征之间是相互独立的.Naive Bayes 训练主要是为每一个特征,在给定的标签的条件下,计算每个特征在该标签的条件下的条件概率.最后用这个训练后的条件概率去预测. 由于我使用的Spark的版本是1.3.0.它所包含的Naive Bayes是 Multinomial NB.截至到我写该篇文章,最新的Spark1.6.0包含multinomial naive Bayes and Bernoulli na…
Microsoft朴素贝叶斯是SSAS中最简单的算法,通常用作理解数据基本分组的起点.这类处理的一般特征就是分类.这个算法之所以称为“朴素”,是因为所有属性的重要性是一样的,没有谁比谁更高.贝叶斯之名则源于Thomas Bayes,他想出了一种运用算术(可能性)原则来理解数据的方法.对此算法的另一个理解就是:所有属性都是独立的,互不相关.从字面来看,该算法只是计算所有属性之间的关联.虽然该算法既可用于预测也可用于分组,但最常用于模型构建的早期阶段,更常用于分组而不是预测某个具体的值.通过要将所有…
Naive Bayes: 简单有效的常用分类算法,典型用途:垃圾邮件分类 假设:给定目标值时属性之间相互条件独立 同样,先验概率的贝叶斯估计是 优点: 1. 无监督学习的一种,实现简单,没有迭代,学习效率高,在大样本量下会有较好的表现. 2. 对分类器的学习情况有着比较简单的解释,可以简单的通过查询学习时计算的一些概率值来了解其分类原理. 缺点: 1. 假设太强--假设特征条件独立,在输入向量的特征条件有关联的场景下并不适用. #################################W…
    朴素贝叶斯是一种很简单的分类方法,之所以称之为朴素,是因为它有着非常强的前提条件-其所有特征都是相互独立的,是一种典型的生成学习算法.所谓生成学习算法,是指由训练数据学习联合概率分布P(X,Y),然后求得后验概率P(X|Y).具体来说,利用训练数据学习P(X|Y)和p(Y)的估计,得到联合概率分布:     概率估计可以是极大似然估计,或者贝叶斯估计.     假设输入 X 为n维的向量集合,输出 Y 为类别,X 和 Y 都是随机变量.P(X,Y)是X和Y的联合概率分布,训练数据集为:…
贝叶斯分类器 贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,即该对象属于某一类的概率,选择具有最大后验概率的类作为该对象所属的类.眼下研究较多的贝叶斯分类器主要有四种,各自是:Naive Bayes.TAN.BAN和GBN. 贝叶斯网络是一个带有概率凝视的有向无环图,图中的每个结点均表示一个随机变量,图中两结点 间若存在着一条弧,则表示这两结点相相应的随机变量是概率相依的,反之则说明这两个随机变量是条件独立的.网络中随意一个结点X 均有一个对应的条件概率表(Con…
一.How to construct the dependency? 1.首字母即随机变量名称 2.I->G是更加复杂的模型,但Bayes里不考虑,因为Bayes只是无环图. 3.CPD = conditional probability distribution.图中的每一个点都是一个CPD,这里5个点,就有五个CPD. 二.Chain Rule for Bayesian Neatworks 将整个Bayes网络的所有节点所构成的联合概率(Joint probability)利用链式法则(ch…