朴素贝叶斯是一种很简单的分类方法,之所以称之为朴素,是因为它有着非常强的前提条件-其所有特征都是相互独立的,是一种典型的生成学习算法.所谓生成学习算法,是指由训练数据学习联合概率分布P(X,Y),然后求得后验概率P(X|Y).具体来说,利用训练数据学习P(X|Y)和p(Y)的估计,得到联合概率分布: 概率估计可以是极大似然估计,或者贝叶斯估计. 假设输入 X 为n维的向量集合,输出 Y 为类别,X 和 Y 都是随机变量.P(X,Y)是X和Y的联合概率分布,训练数据集为:…
一.How to construct the dependency? 1.首字母即随机变量名称 2.I->G是更加复杂的模型,但Bayes里不考虑,因为Bayes只是无环图. 3.CPD = conditional probability distribution.图中的每一个点都是一个CPD,这里5个点,就有五个CPD. 二.Chain Rule for Bayesian Neatworks 将整个Bayes网络的所有节点所构成的联合概率(Joint probability)利用链式法则(ch…