目录 凸集的基本概念 凸函数的基本概念 凸优化的一般提法 凸集基本概念 思考两个不能式 两个正数的算术平均数大于等于几何平均数 给定可逆对称阵Q,对于任意向量x,y,有: 思考凸集和凸函数 在机器学习中,我们把形如 这样的图形的都称为凸函数. \(y=x^2\)是凸函数,函数图像上位于\(y=x^2\)的区域构成凸集. 凸函数图像的上方区域,一定是凸集: 一个函数图像的上方区域为凸集,则该函数是凸函数. 直线的向量表达 已知二维平面上的两定点A(5,1),B(2,3)尝试给出经过带你AB的直线方…
SVM之问题形式化 SVM之对偶问题 SVM之核函数 SVM之解决线性不可分 >>>写在SVM之前——凸优化与对偶问题 本篇是写在SVM之前的关于优化问题的一点知识,在SVM中会用到.考虑到SVM之复杂,将其中优化方面基础知识提出,单作此篇.所以,本文也不会涉及优化问题的许多深层问题,只是个人知识范围内所了解的SVM中涉及到的优化问题基础. 一.凸优化问题 在优化问题中,凸优化问题由于具有优良的性质(局部最优解即是全局最优解),受到广泛研究. 对于一个含约束的优化问题: \[\left\…
没有系统学过数学优化,但是机器学习中又常用到这些工具和技巧,机器学习中最常见的优化当属凸优化了,这些可以参考Ng的教学资料:http://cs229.stanford.edu/section/cs229-cvxopt.pdf,从中我们可以大致了解到一些凸优化的概念,比如凸集,凸函数,凸优化问题,线性规划,二次规划,二次约束二次规划,半正定规划等,从而对凸优化问题有个初步的认识.以下是几个重要相关概念的笔记. 凸集的定义为: 其几何意义表示为:如果集合C中任意2个元素连线上的点也在集合C中,则C为…
http://www.cnblogs.com/murongxixi/p/3598645.html 在前两节里已经涉及到集合的相对内部与闭包的概念,这一节我们深入研究它们的性质和计算,之后介绍凸函数的连续性以及函数闭包的概念. 设凸集\(C\)是\(\mathbb{R}^n\)的非空子集,由命题1.1.2(4)知,其闭包\(cl(C)\)是非空凸集,其内部\(int(C)\)也是凸集,但是可能是空的(\(\mathbb{R}^3\)中的集合\(S=\{ \boldsymbol{x} \in \ma…
本博客已经迁往http://www.kemaswill.com/, 博客园这边也会继续更新, 欢迎关注~ 在机器学习中, 很多情况下我们都需要求得一个 问题的全局最优值(global optimum). 大多数的全局最优值很难求得, 但是对于凸问题, 我们可以比较高效的找到其全局最优值, 这是由凸问题的性质决定的.我们将逐步的介绍凸集, 凸函数, 凸问题等. 1. 凸集(convex set) 对于一个集合\(C\), 如果对于任意两个元素\(x,y \in C\), 以及任意实数\(\thet…
姚班天才少年鬲融凭非凸优化研究成果获得斯隆研究奖 近日,美国艾尔弗·斯隆基金会(The Alfred P. Sloan Foundation)公布了2019年斯隆研究奖(Sloan Research Fellowships)获奖名单,华裔学者鬲融获此殊荣. 鬲融 2004 年从河北省保送至清华大学计算机系,是首届清华姚班毕业生,普林斯顿大学计算机科学系博士,曾在微软研究院新英格兰分部做博士后,2015年至今在杜克大学担任助理教授. 斯隆研究奖自1955年设立,每年颁发一次,旨在向物理学.化学和数…
概述:在对支持向量机的学习和使用过程中,遇到了许许多多的问题,通过查阅各种资料,也是逐一攻克了遇到的问题.感悟颇多,写此博文的目的是想以一个学习者的身份从一个刚接触支持向量机的角度去记录模型推到过程中的种种困惑以及理解过程,以帮助更多人的更省时的了解和学习支持向量机: 本文主要记录和解决的问题: 说明:每个问题所标的星级表示此问题的理解对后边推导过程的影响程度,也就是说理解不到位会使得自己越看越糊涂(仅供参考) 1.我自己学习和推到支持向量机的过程路线 2.三维空间中点到直线的距离的计算,以及分…
SVM目前被认为是最好的现成的分类器,SVM整个原理的推导过程也很是复杂啊,其中涉及到很多概念,如:凸集和凸函数,凸优化问题,软间隔,核函数,拉格朗日乘子法,对偶问题,slater条件.KKT条件还有复杂的SMO算法! 相信有很多研究过SVM的小伙伴们为了弄懂它们也是查阅了各种资料,着实费了不少功夫!本文便针对SVM涉及到的这些复杂概念进行总结,希望为大家更好地理解SVM奠定基础(图片来自网络). 一.凸集和凸函数 在讲解凸优化问题之前我们先来了解一下凸集和凸函数的概念 凸集:在点集拓扑学与欧几…
CMU凸优化笔记--凸集和凸函数 结束了一段时间的学习任务,于是打算做个总结.主要内容都是基于CMU的Ryan Tibshirani开设的Convex Optimization课程做的笔记.这里只摘了部分内容做了笔记,很感谢Ryan Tibshirani在官网中所作的课程内容开源.也很感谢韩龙飞在CMU凸优化课程中的中文笔记,我在其基础上做了大量的内容参考.才疏学浅,忘不吝赐教. 1.凸集合 1.1 基本概念 定义:给定一个集合$C \subseteq \mathbb{R}^n $,满足下列条件…
最近的看的一些内容好多涉及到凸优化,没时间系统看了,简单的了解一下,凸优化的两个基本元素分别是凸函数与凸包 凸集 凸集定义如下: 也就是说在凸集内任取两点,其连线上的所有点仍在凸集之内. 凸函数 凸函数的定义如下: $\theta x+(1-\theta)y$的意思就是说在区间 $(x,y)$ 之间任取一点 $y – \theta(y-x)$ 即为 $\theta x+(1-\theta)y$ , 凸函数的几何意义表示为函数任意两点的连线上的取值大于该点在函数上的取值,几何示意图形如下: 凸函数…