首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
查找、AVL树、散列表
】的更多相关文章
数据结构(四十二)散列表查找(Hash Table)
一.散列表查找的基础知识 1.散列表查找的定义 散列技术是在记录的存储位置和它的关键字之间建立一个确定的对应关系f,使得每个关键字key对应一个存储位置f(key).查找时,根据这个确定的对应关系找到给定值key的映射f(key),若查找集合中存在这个记录,则必定存在在f(key)的位置上. 把对应关系f称为散列函数,又称为哈希(Hash)函数,采用散列技术将记录存储在一块连续的存储空间中,这块连续存储空间称为散列表或哈希表(Hash Table).关键字对应的记录存储位置称为散列地址. 2.散…
数据结构---散列表查找(哈希表)概述和简单实现(Java)
散列表查找定义 散列技术是在记录的存储位置和它的关键字之间建立一个确定的对应关系f,是的每个关键字key对应一个存储位置f(key).查找时,根据这个确定的对应关系找到给定值的key的对应f(key). 我们把这种对应关系f称为散列函数,又称哈希(Hash)函数,按这个思想,采用散列技术将记录存储在一块连续的存储空间中,这块连续存储空间成为散列表或哈希表.关键字对应的记录存储位置我们成为散列地址. 查找时的步骤: 在存储时,通过散列函数计算记录的散列地址,并按散列地址存储该记录. 当查找记录时,…
数据结构之AVL树
AVL树是高度平衡的而二叉树.它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. 旋转 如果在AVL树中进行插入或删除节点后,可能导致AVL树失去平衡.这种失去平衡的可以概括为4种姿态:LL(左左),LR(左右),RR(右右)和RL(右左).下面给出它们的示意图: 1) LL:LeftLeft,也称为"左左".插入或删除一个节点后,根节点的左子树的左子树还有非空子节点,导致"根的左子树的高度"比"根的右子树的高度"大2,导致AVL树失去…
AVL树(三)之 Java的实现
概要 前面分别介绍了AVL树"C语言版本"和"C++版本",本章介绍AVL树的Java实现版本,它的算法与C语言和C++版本一样.内容包括:1. AVL树的介绍2. AVL树的Java实现3. AVL树的Java测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577479.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实…
AVL树(一)之 图文解析 和 C语言的实现
概要 本章介绍AVL树.和前面介绍"二叉查找树"的流程一样,本章先对AVL树的理论知识进行简单介绍,然后给出C语言的实现.本篇实现的二叉查找树是C语言版的,后面章节再分别给出C++和Java版本的实现.建议:若您对"二叉查找树"不熟悉,建议先学完"二叉查找树"再来学习AVL树. 目录 1. AVL树的介绍2. AVL树的C实现3. AVL树的C实现(完整源码)4. AVL树的C测试程序 转载请注明出处:http://www.cnblogs.com…
AVL树(二)之 C++的实现
概要 上一章通过C语言实现了AVL树,本章将介绍AVL树的C++版本,算法与C语言版本的一样. 目录 1. AVL树的介绍2. AVL树的C++实现3. AVL树的C++测试程序 转载请注明出处:http://www.cnblogs.com/skywang12345/p/3577360.html 更多内容: 数据结构与算法系列 目录 (01) AVL树(一)之 图文解析 和 C语言的实现(02) AVL树(二)之 C++的实现(03) AVL树(三)之 Java的实现 AVL树的介绍 AVL树是…
AVL树----java
AVL树----java AVL树是高度平衡的二叉查找树 1.单旋转LL旋转 理解记忆:1.在不平衡的节点的左孩子的左孩子插入导致的不平衡,所以叫LL private AVLTreeNode<T> leftLeftRotation(AVLTreeNode<T> k2) { AVLTreeNode<T> k…
AVL树的实现——c++
一.概念 AVL树是根据它的发明者G.M. Adelson-Velsky和E.M. Landis命名的.它是最先发明的自平衡二叉查找树,也被称为高度平衡树.相比于"二叉查找树",它的特点是:AVL树中任何节点的两个子树的高度最大差别为1. AVL树的查找.插入和删除在平均和最坏情况下都是O(logn).如果在AVL树中插入或删除节点后,使得高度之差大于1.此时,AVL树的平衡状态就被破坏,它就不再是一棵二叉树:为了让它重新维持在一个平衡状态,就需要对其进行旋转处理.学AVL树,重点的地…
数据结构--Avl树的创建,插入的递归版本和非递归版本,删除等操作
AVL树本质上还是一棵二叉搜索树,它的特点是: 1.本身首先是一棵二叉搜索树. 2.带有平衡条件:每个结点的左右子树的高度之差的绝对值最多为1(空树的高度为-1). 也就是说,AVL树,本质上是带了平衡功能的二叉查找树(二叉排序树,二叉搜索树). 对Avl树进行相关的操作最重要的是要保持Avl树的平衡条件.即对Avl树进行相关的操作后,要进行相应的旋转操作来恢复Avl树的平衡条件. 对Avl树的插入和删除都可以用递归实现,文中也给出了插入的非递归版本,关键在于要用…
06-看图理解数据结构与算法系列(AVL树)
AVL树 AVL树,也称平衡二叉搜索树,AVL是其发明者姓名简写.AVL树属于树的一种,而且它也是一棵二叉搜索树,不同的是他通过一定机制能保证二叉搜索树的平衡,平衡的二叉搜索树的查询效率更高. AVL树特点 AVL树是一棵二叉搜索树. AVL树的左右子节点也是AVL树. AVL树拥有二叉搜索树的所有基本特点. 每个节点的左右子节点的高度之差的绝对值最多为1,即平衡因子为范围为[-1,1]. 图中红色数字表示对应节点的高度,可以看到同一层的节点高度差都没有超过1. 二叉搜索树的平衡 基础的二叉搜索…