BZOJ.2177.曼哈顿最小生成树(Kruskal)】的更多相关文章

\(Solution\) 参考 对于每个点,向唯一有可能与它形成MST的8个点连边,由于是双向单边,所以每个点最多连出4条边(证明见blog) 怎么找到一个区域内最近的点? 只考虑y轴右侧45°的区域,其余部分可以通过坐标变换移动到这一区域 设当前点P(x0,y0),这一区域一点P1(x1,y1),满足x1>x0 && y1-x1>y0-x0 那么dis(AB)= y1-y0+x1-x0 = x1+y1-(x0+y0) 这样这一区域内dis(AB)最小的点即 在满足之前条件的点…
Sol 考了好几次曼哈顿最小生成树,然而一直不会打...这次终于打出来了...神tm调试了2h...好蛋疼... 首先曼哈顿最小生成树有个结论就是讲它每45度分出一个象限,对于每个点,只与每个象限中离他最近的点连线,做最小生成树,就是他们的曼哈顿最小生成树. 关于证明,先让我想想再来补. 我们的问题两个方面:为什么将平面分成8块;为什么只需要连接每块中距离最小的点. 不过好像没人稀罕说第一个问题...我自己yy了一下,感觉挺科学的...将平面分成8块的原因就是两个点计算距离的时候去掉绝对值后有8…
2177: 曼哈顿最小生成树 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 190  Solved: 77[Submit][Status][Discuss] Description 平面坐标系xOy内,给定n个顶点V = (x , y).对于顶点u.v,u与v之间的距离d定义为|xu – xv| + |yu – yv| 你的任务就是求出这n个顶点的最小生成树. Input 第一行一个正整数n,表示定点个数. 接下来n行每行两个正整数x.y,描述一…
Object Clustering Time Limit: 2000MS   Memory Limit: 131072K Total Submissions: 2640   Accepted: 806 Description We have N (N ≤ 10000) objects, and wish to classify them into several groups by judgement of their resemblance. To simply the model, each…
题意:转换一下就是求曼哈顿最小生成树的第n-k条边 参考:莫涛大神的论文<平面点曼哈顿最小生成树> /* Problem: 3241 User: 96655 Memory: 920K Time: 94MS Language: C++ Result: Accepted */ #include<cstdio> #include<cstring> #include<algorithm> #include<iostream> #include<cs…
并查集:找祖先并更新,注意路径压缩,不然会时间复杂度巨大导致出错/超时 合并:(我的祖先是的你的祖先的父亲) 找父亲:(初始化祖先是自己的,自己就是祖先) 查询:(我们是不是同一祖先) 路径压缩:(每个点只保存祖先,不保存父亲) 最小生成树kruskal:贪心算法+并查集数据结构,根据边的多少决定时间复杂度,适合于稀疏图 核心思想贪心,找到最小权值的边,判断此边连接的两个顶点是否已连接,若没连接则连接,总权值+=此边权值,已连接就舍弃继续向下寻找: 并查集数据结构程序: #include<ios…
最小生成树——Kruskal与Prim算法 序: 首先: 啥是最小生成树??? 咳咳... 如图: 在一个有n个点的无向连通图中,选取n-1条边使得这个图变成一棵树.这就叫“生成树”.(如下图) 每个无向连通图都会拥有至少一个生成树. 而在无向连通图中,我们让每一个边都拥有一个边权(就是每个边代表一个值). 而我们在有边权的无向连通图中构造一个生成树,使得这个生成树所用的边的边权之和最小.这个生成树就叫这个无向连通图的最小生成树! 上图这个最小生成树的边权之和为9,是所有生成树中边权之和最小的.…
[转]最小生成树--Kruskal算法 标签(空格分隔): 算法 本文是转载,原文在最小生成树-Prim算法和Kruskal算法,因为复试的时候只用到Kruskal算法即可,故这里不再涉及Prim算法,如有需要可到原文查看. Kruskal算法 1.概览 Kruskal算法是一种用来寻找最小生成树的算法,由Joseph Kruskal在1956年发表.用来解决同样问题的还有Prim算法和Boruvka算法等.三种算法都是贪婪算法的应用.和Boruvka算法不同的地方是,Kruskal算法在图中存…
不同最小生成树中权值相同的边数量是一定的, 而且他们对连通性的贡献是一样的.对权值相同的边放在一起(至多10), 暴搜他们有多少种方案, 然后乘法原理. ------------------------------------------------------------------------------------- #include<cstdio> #include<cstring> #include<algorithm>   using namespace s…
题目链接 最小生成树有两个性质: 1.在不同的MST中某种权值的边出现的次数是一定的. 2.在不同的MST中,连接完某种权值的边后,形成的连通块的状态是一样的. \(Solution1\) 由这两个性质,可以先求一个MST,再枚举每一组边(权值相同的看做一组边),对每组边DFS(\(O(2^{10})\)),若某种方案连通性同MST相同(记录连通块个数即可).则sum++. 最后根据乘法原理,最后的答案即为所有sum相乘. \(Solution2\) 容易想到MatrixTree定理. 按边权从…