[论文标题]Predict and Constrain: Modeling Cardinality in Deep Structured Prediction   (35th-ICML,PMLR) [论文作者]Nataly Brukhim,Amir Globerson [论文链接]Paper (13-pages // Single column) [摘要] 许多机器学习问题需要多维标签的预测.这种结构化预测模型可以从标签之间的依赖关系建模中获益.最近,已有研究提出了几种结构预测的深度学习方法.在…
前言引用 [2] DSDNet Deep Structured self-Driving Network Wenyuan Zeng, Shenlong Wang, Renjie Liao, Yun Chen, Bin Yang, Raquel Urtasun (ECCV 2020) 从这里我们进入了比较正式的期刊论文(我其实挺喜欢NVIDIA的写作风格类似于报告 但是比较易懂 让我们下次看看这篇吧)正式所以摘要很少 hhh 摘要 万事从摘要开始: In this paper, we propos…
Huang, Po-Sen, et al. "Learning deep structured semantic models for web search using clickthrough data." Proceedings of the 22nd ACM international conference on Conference on information & knowledge management. ACM, 2013. 该网络把两个不同的输入映射到相同的语义…
[论文标题]Wide & Deep Learning for Recommender Systems (DLRS'16) [论文作者] Heng-Tze Cheng, Levent Koc, Jeremiah Harmsen, Tal Shaked, Tushar Chandra,Hrishi Aradhye, Glen Anderson, Greg Corrado, Wei Chai, Mustafa Ispir, Rohan Anil,Zakaria Haque, Lichan Hong,…
原ppt下载:pan.baidu.com/s/1nv54p9R,密码:3mty 需深入实践并理解的重要概念: Deep Learning: SoftMax Fuction(输出层归一化函数,与sigmoid相似的激活函数,用于解决分类问题(分类大于2时:sigmoid解决二分类问题)) 1) 2)每个neuron的softmax输出:,其中: DNN(Deep Neural Networks): MSE(Means Square Error,均方误差) / CE(Cross Entropy,交叉…
[论文标题]Modeling User Exposure in Recommendation (2016-WWW) [论文作者]Dawen Liang,Laurent Charlin,James McInerney,David M. Blei [论文链接]Paper(11-pages  // Double column) [摘要] 通过利用用户之间的相似模式,协作过滤分析用户对项目的偏好(例如,书籍.电影.餐馆.学术论文).在隐式反馈设置中,所有的项目,包括用户不使用的项目,都被考虑在内.但这样…
大纲 深度学习介绍 深度学习训练的技巧 神经网络的变体 展望 深度学习介绍 深度学习介绍 深度学习属于机器学习的一种.介绍深度学习之前,我们先大致了解一下机器学习. 机器学习,拿监督学习为例,其本质上是要找到一个函数映射:输入数据(也就是训练样本)通过函数映射(也就是我们的机器学习算法)到输出空间上(也就是目标值,如果是分类问题,映射到某一类上). \[Meachine Learning \approx LookingFor A Function.\] 那么我们如何从一个函数空间里找到目标函数呢…
第一周 机器学习(ML)策略(1)(ML strategy(1)) 1.1 为什么是 ML 策略?(Why ML Strategy?) 希望在这门课程中,可以教给一些策略,一些分析机器学习问题的方法,可以指引朝着最有希望的方向前进.这门课中,我会分享我在搭建和部署大量深度学习产品时学到的经验和教训.比如说,很多大学深度学习课程很少提到这些策略.事实上,机器学习策略在深度学习的时代也在变化,因为现在对于深度学习算法来说能够做到的事情,比上一代机器学习算法大不一样. 1.2 正交化(Orthogon…
参考:https://blog.csdn.net/red_stone1/article/details/78519599 1. 正交化(Orthogonalization) 机器学习中有许多参数.超参数需要调试. 通过每次只调试一个参数,保持其它参数不变而得到的模型某一性能改变是一种最常用的调参策略,我们称之为正交化方法(Orthogonalization). 对应到机器学习监督式学习模型中,可以大致分成四个独立的"功能": Fit training set well on cost…
目录 第一周 机器学习策略(1) 第二周 机器学习策略(2) 目标:学习一些机器学习优化改进策略,使得搭建的学习模型能够朝着最有希望的方向前进. 第一周 机器学习策略(1) 搭建机器学习系统的挑战:尝试和改变的东西太多,比如超参数. 什么是正交化? 正交化是协助调节搭建机器学习系统的方法之一,类比老式电视机的调节按钮,正交化指的是电视设计师设计这样的按钮,使得每个按钮都只调整一个性质,这样调整电视图像就很容易,就可以把图像跳到正中. 训练神经网络时,使用early stopping虽然可以改善过…