第十三章 利用PCA来简化数据 一.降维技术 当数据的特征很多的时候,我们把一个特征看做是一维的话,我们数据就有很高的维度.高维数据会带来计算困难等一系列的问题,因此我们需要进行降维.降维的好处有很多,比如:降低算法开销,让数据更加便于使用,去燥,数据更易于显示等等. 目前的降维技术主要有三种:第一种主成分分析(PCA),也就是本章介绍的内容,它只保留方差方向最大的若干个特征:第二种是因子分析,这种方法它的思想就是认为数据是由隐参数和噪声混合而成,如果我们能够找到隐参数和噪声就能够实现降维:第三…