白化(Whitening): PCA 与 ZCA (转)】的更多相关文章

转自:findbill 本文讨论白化(Whitening),以及白化与 PCA(Principal Component Analysis) 和 ZCA(Zero-phase Component Analysis) 的关系. 白化 什么是白化? 维基百科给出的描述是: 即对数据做白化处理必须满足两个条件: 使数据的不同维度去相关: 使数据每个维度的方差为1: 条件1要求数据的协方差矩阵是个对角阵:条件2要求数据的协方差矩阵是个单位矩阵. 为什么使用白化? 教程给出的解释是: 假设训练数据是图像,由…
预处理:主成分分析与白化 Preprocessing:PCA and Whitening 一主成分分析 PCA 1.1 基本术语 主成分分析 Principal Components Analysis 白化 whitening 亮度 intensity 平均值 mean 方差 variance 协方差矩阵 covariance matrix 基 basis 幅值 magnitude 平稳性 stationarity 特征向量 eigenvector 特征值 eigenvalue 1.2 介绍 主…
白化是一种重要的预处理过程,其目的就是降低输入数据的冗余性,使得经过白化处理的输入数据具有如下性质:(i)特征之间相关性较低:(ii)所有特征具有相同的方差. 白化又分为PCA白化和ZCA白化,在数据预处理阶段通常会使用PCA白化进行去相关操作(降低冗余,降维),而ZCA则只是去相关,没有降维. 区别如下: PCA白化ZCA白化都降低了特征之间相关性较低,同时使得所有特征具有相同的方差. ,ZCA白化只需保证方差相等. 2.   PCA白化可进行降维也可以去相关性,而ZCA白化主要用于去相关性另…
[转载]什么是白化(whitening)? 来源:https://blog.csdn.net/hjimce/article/details/50864602 白化whitening 原文地址:http://blog.csdn.net/hjimce/article/details/50864602 作者:hjimce 一.相关理论 白化这个词,可能在深度学习领域比较常遇到,挺起来就是高大上的名词,然而其实白化是一个比PCA稍微高级一点的算法而已,所以如果熟悉PCA,那么其实会发现这是一个非常简单的…
原文地址:http://blog.csdn.net/hjimce/article/details/50864602 作者:hjimce 一.相关理论     白化这个词,可能在深度学习领域比较常遇到,挺起来就是高大上的名词,然而其实白化是一个比PCA稍微高级一点的算法而已,所以如果熟悉PCA,那么其实会发现这是一个非常简单的算法.     白化的目的是去除输入数据的冗余信息.假设训练数据是图像,由于图像中相邻像素之间具有很强的相关性,所以用于训练时输入是冗余的:白化的目的就是降低输入的冗余性.…
废话: 这博客有三个月没更新了. 三个月!!!尼玛我真是够懒了!! 这三个月我复习什么去了呢? 托福………… 也不是说我复习紧张到完全没时间更新, 事实上我甚至有时间打LOL. 只是说,我一次就只能(只想?)做一件事情. 对我来说,在两种不同思维之间转换是十分耗费能量的. 说白了我!就!是!个!废!柴!……哼…… 前言: PCA与白化, 就是对输入数据进行预处理, 前者对数据进行降维,后者对数据进行方差处理. 虽说原理挺简单,但是作用可不小. 之前的师兄做实验的时候,就是忘了对数据预处理, 结果…
主成分分析与白化是在做深度学习训练时最常见的两种预处理的方法,主成分分析是一种我们用的很多的降维的一种手段,通过PCA降维,我们能够有效的降低数据的维度,加快运算速度.而白化就是为了使得每个特征能有同样的方差,降低相邻像素的相关性. 主成分分析PCA PCA算法可以将输入向量转换为一个维数低很多的近似向量.我们在这里首先用2D的数据进行试验,其数据集可以在UFLDL网站的相应页面http://ufldl.stanford.edu/wiki/index.php/Exercise:PCA_in_2D…
之前在看斯坦福教程中whiteining这一章时,由于原始图像相邻像素值具有高度相关性,所以图像数据信息冗余,对于白化的作用的描述主要有两个方面:1,减少特征之间的相关性:2,特征具有相同的方差(协方差阵为1):但是为什么这么做,以及这样做对于算法或者数据有什么好处,一直雨里雾里的,最近看了ICA的数据预处理之后,发现一个教程图解的白化方法和作用很好. 白化,又称漂白或者球化:是对原始数据x实现一种变换,变换成x_Whitened;使x_Whitened的协方差矩阵的为单位阵. 一般情况下,所获…
http://blog.csdn.net/dinosoft/article/details/50103503 推荐一个deep learning绝佳的入门资料 * UFLDL(Unsupervised Feature Learning and Deep Learning)教程 http://deeplearning.stanford.edu/wiki/index.php/UFLDL%E6%95%99%E7%A8%8B 故意把链接地址也写出来,方便看到来源,嘿嘿. 资料写得相当赞,还有中文版.看懂…
PCA 给定一组二维数据,每列十一组样本,共45个样本点 -6.7644914e-01  -6.3089308e-01  -4.8915202e-01 ... -4.4722050e-01  -7.4778067e-01  -3.9074344e-01 ... 可以表示为如下形式: 本例子中的的x(i)为2维向量,整个数据集X为2*m的矩阵,矩阵的每一列代表一个数据,该矩阵的转置X' 为一个m*2的矩阵: 假设如上数据为归一化均值后的数据(注意这里省略了方差归一化),则数据的协方差矩阵Σ为 1/…